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Answer in English. Make clear in your answer how you reach the final result; the road to
the answer is very important. Write your name and student number on each sheet and use
one sheet per question.

Question 1 (8.5 points)

For each of the following sets or functions, prove its convexity, concavity, or both.
The following hint might turn useful:

1. if a, b ≥ 0 and θ ∈ [0, 1] then aθb(1−θ) ≤ θa+ (1− θ)b

Exercises

(a) The function f(x) = ex. Show it only by showing the convexity or non convexity of its
epigraph. (2 points)

(b) The set S = {(x, t) ∈ R2|t ≤ 1√
2πσ2

e−
(x−µ)2

2σ2 , t ≥ 0} for two constant parameters µ, σ.

Hint: you can graphically show the convexity or non-convexity of the set, by explicitly
sketching the set and coloring its interior. (2 points)

(c) f(x) = infy∈[1,2] yax
2 with domf ∈ R and a < 0. (1 point)

(d) The set S = {ejθ||ejθ| = 1} for θ ∈ [0, 2π], where j is the imaginary unit. Draw a sketch
of the set. (1 point)

(e) The set S = {θ| sin θ ≤ 1} for θ ∈ [0, 2π]. Draw a sketch of the set. (1 point)

(f) The function f(x) = x⊤Ax with A =
∑N

i=1 aia
⊤
i (1.5 points)

Solution

(a) 2p It is convex. We can show this by showing that the epigraph of f is a convex set:

epif = {(x, t) ∈ Rn+1|ex ≤ t}



Consider two distinct points x̄1 = [x1, t1]
⊤ and x̄2 = [x2, t2]

⊤, both belonging to epif .
We need to show that ∀ θ ∈ [0, 1] the point x̄ := θx̄1 + (1 − θ)x̄2 belongs to epif .
Expanding this expression we have:

x̄ = θx̄1 + (1− θ)x̄2 = [θx1 + (1− θ)x2, θt1 + (1− θ)t2]

and:

eθx1+(1−θ)x2) = eθx1e(1−θ)x2 ≤ tθ1t
1−θ
2 ≤ θt1 + (1− θ)t2

from which we conclude that x̄ ∈ epif and that f is convex.

(b) 2p It is not convex, since it is the set of points in R2 lying below the graph of the
Gaussian function, which can be graphically be shown to not be convex. Formally, S is
the hypograph of the function f(x) = N (x;µ, σ2). Since function f(x) is not concave
(it is quasi concave), then its hypograph cannot be convex.

(c) 1p It is concave, since for any y ∈ [1, 2] the function yax2 is concave in x, due to the
fact that a < 0.

(d) 1p It is not convex, since it is the circumference of a circle.

(e) 1p It is convex, since it is simply the line segment θ ∈ [0, 2π].

(f) 1.5p It is convex since the Hessian of the function is A, which is always positive semidef-
inite due to the fact that it is a matrix given by the sum of outer products of a vector
with itself.
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Question 2 (10.5 points)

Consider the following optimization problem:

min
x

f(x) :=
1

2
(x+ 2)2 (P)

s. t. x ≤ −3

(a) Draw the objective function and the constraint set. Compute the KKT conditions and
find x⋆. (2.5 points)

Suppose that now our constraint set C is: x ∈ [−8, 2], while the objective function f(x) does
not change.

(b) How do you expect the lagrangian multiplier(s) associated to the inequality constraints
to be (higher, smaller or equal to 0)? Why? (0.5 points)

Although this optimization problem is manageable in a low-dimensional setting, where solu-
tions can be obtained using KKT conditions, projected gradient descent, or even by visual
inspection, it becomes considerably more challenging in higher dimensions with a diverse set
of constraints. Hence, we proceed by developing an iterative algorithm tailored specifically
to solve constrained problems.
Specifically, assume that at the kth iteration of our algorithm, our estimate xk is xk = −6.
Denote with f̂k(x) the first-order approximation of f(·) at the point xk.

(c) Compute f̂k(x) and solve:

sk := argmin
x

f̂k(x)

s. t. x ∈ C

Is the value of the original function f(·) attained at sk lower or higher than the value
of f̂k(·) at sk? Do you always expect such property to hold? Draw a sketch of this
optimization problem. (3 points)

The point sk is the minimizer of f̂k(x) and not of f(x). Thus in general f(sk) might be
even higher than the value attained by the previous iterate xk, i.e., f(xk). Thus, we usually
compute the iterate at iteration k + 1, i.e. xk+1 with the following update:

xk+1 = α⋆xk + (1− α⋆)sk

where α⋆ is the scalar value minimizing the following line-search problem:

α⋆ = argmin
α

f(αxk + (1− α)sk)

s. t. α ∈ [0, 1]

(d) Is xk+1 always feasible? Why? Compute α⋆ and xk+1 (3 points)

(e) Solve the original problem P with a projected gradient descent, starting at x0 = −6
and a step size t = 0.5. How many steps do you need to reach the optimal point? (1.5
points)
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Solution

In this question, in particular (c) and (d), we will develop the so called Frank-Wolfe method,
also called conditional gradient method, used to solve constrained optimization problem.

(a) The Lagrangian is L(x, λ) = 1
2(x+ 2)2 + λ(x+ 3) and the KKT conditions:

• x⋆ + 3 ≤ 0

• λ⋆ ≥ 0

• λ⋆(x⋆ + 3) = 0

• ∂
∂xL(x, λ) = 0

From the last equation we get x⋆ + 2 + λ⋆ = 0 ⇒ x⋆ = −λ⋆ − 2. Substituting into the
complementary slackness condition we find −λ⋆2 + λ⋆ = −λ⋆(λ⋆ − 1) = 0. From this
equality λ⋆ can either be 0 or +1. If λ⋆ = 0 we have x⋆ = −2, which is not feasible
because the primal feasibility is not satisfied. Thus we conclude λ⋆ = 1 (the constraint
is active) and x⋆ = −3.

(b) Since the objective function is a parabola centered at x = −2, and this point is strictly
feasible, then the Lagrange multipliers are equal to 0.

(c) We have:

f̂k(x) = f(xk) + f ′(xk)(x− xk) = 8− 4(x+ 6) = −4x− 16

Thus the optimization problem we need to solve is:

sk := argmin
x

−4x− 16

s. t. − 8 ≤ x ≤ 2

Since this is a linear program, its optimum lies in the border of the feasible set, specif-
ically at x = 2. Thus sk = 2. It holds f(sk) = 8 > −24 = f̂k(sk) . This was expected
since the first-order Taylor approximation of a function is a global underestimator of
the function it approximates.

(d) The point xk+1 is always feasible because it is the convex combination of xk and sk,
which are both feasible points. To find this point, we need look at the line segment
αxk + (1− α)sk and find the α⋆ such that the point α⋆xk + (1− α⋆)sk minimizes f(·).
The line segment is given by −6α+ 2(1− α) = −8α+ 2. Thus:

α⋆ = argmin
α∈[0,1]

f(−8α+ 2)

= argmin
α∈[0,1]

1

2
(−8α+ 4)2

from which α⋆ = 0.5. Thus xk+1 = −2.
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(e) The gradient step is given by:

x1 = −6− 0.5(−6 + 2) = −4

and since the point is already in the feasible set, the projection does not affect the point.
Then, the next iterate is:

x2 = −4− 0.5(−4 + 2) = −3

which is the optimum of the problem. So in total 2 iterations were necessary to reach
convergence.
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Question 3 (10 points)

Consider the following unconstrained optimization problem:

f(x) = 3|x1|+ 2|x2|

(a) Is the above problem convex? Is it differentiable? (1 point)

(b) Sketch the function using at least 2 of its sublevel sets. Indicate the objective function
value at one of the sublevel sets, and give the coordinates of the points where the
sublevel set crosses the axes. (1 point)

(c) What is the subdifferential of the function at the point x = (0, 2)? (3 points)

(d) Calculate x(1), i.e. the point obtained after one iteration of a (sub)gradient descent
algorithm for minimizing f(x), starting from x(0) = (2, 2). Use exact line search for the
step size. Explain your steps and all details of your calculation. (3 points)

(e) Indicate the search line (i.e. along which you performed the exact line search) on your
sketch from question (b). Discuss whether your result for x(1) matches your expectations
based on this sketch. (2 points)

Solution

(a) It is convex, but non-differentiable.

(b) See Figure 1 below.

(c) Taking f1(x) = 3|x1| and f2(x) = 2|x2| and using the addition rule of subgradient
calculus:

∂f(x) = ∂f1(x) + ∂f2(x)

At x = (0, 2) f2(x) is differentiable, therefore, ∂f2(x) = ∇f2(x) =

[
0
2

]
. However, at

x = (0, 2) f1(x) is not differentiable. It can be written as the pointwise maximum of 2
functions:

f1(x) = max(g1(x), g2(x)) = max(3x1,−3x1)

According to the finite pointwise maximum rule

∂f1(x) = Co
⋃

{∂gi(x)|gi(x) = f1(x)} (1)

As both functions (i.e. g1(x) and g2(x)) are active at x = (0, 2), we need to take

the convex hull of the union of their subdifferentials. ∂g1(x) = ∇g1(x) =

[
3
0

]
, while

∂g2(x) = ∇g2(x) =

[
−3
0

]
. The convex hull of their union gives a line segment between

(3, 0) and (−3, 0) for ∂f1(x). Finally, ∂f(x) = ∂f1(x) + ∂f2(x) will be a line segment
between (3, 2) and (−3, 2).
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Figure 1: Countour lines of f(x) and search line of gradient descent from point (2,2)

(d) At (2, 2) the function is differentiable, so we can use gradient descent. First, find an
expression for x(1):

x(1) = x(0) − t∇f(x(0)) =

[
2
2

]
− t

[
3
2

]
To determine the step size, we have to find

argmin
t

f(

[
2
2

]
− t

[
3
2

]
) = 3|2− 3t|+ 2|2− 2t|.

This is a piece-wise linear function. Simple inspection reveals that the minimum is
attained at t = 2

3 .

Finally, substituting this back to equation (1):

x(1) = x(0) − t∇f(x(0)) =

[
2
2

]
− 2

3

[
3
2

]
=

[
0
2
3

]

(d) See Figure 1 below. x(1), i.e. the minimum point along the line is the point where the
search line crosses the x2 axis. This is logical, considering that this point is the upper
peak of a small diamond, representing a sublevel set with a small objective function
value. Points around x(1) are outside the small diamond, hence, they have a larger
objective function value.
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Question 4 (11 points)

Suppose a user wants to take a flight from Amsterdam to Madrid and can select either our
airline a or an alternative airline b. Our airline has two flights: flight a1 with price ca1 > 0
and flight a2 with price ca2 > ca1 > 0. The price for the alternative airline is cb > 0. Our
goal is to maximize the probability that a user will take our airline.

One would expect that a user always selects the cheapest airline but this does not account
for irrational user behavior. Researchers in transportation tackle this issue by modeling the
probability of taking airline a as pa = e−ca

e−ca+e−cb
, where ca is the cost for airline a which is

thus either ca1 or ca2. As a result, the following problem is solved

(p∗a, z
∗
a1, z

∗
a2) = arg max

pa,za1,za2
pa (2)

subject to pa ≤ e−ca1za1−ca2za2

e−ca1za1−ca2za2 + e−cb
,

za1, za2 ∈ {0, 1},
za1 + za2 = 1.

Here the variables za1 and za2 are binary and indicate which flight from airline a the user will
take, either flight a1 or flight a2.

(a) Show that problem (2) is non-convex even if zz1 and za2 are not binary. To do this,

make a rough plot of the function f(x) = e−x

e−x+c
, where c is a constant, and conclude

from the plot that f(x) cannot be convex (check for instance the limits of f(x) at −∞
and +∞). (1 point)

(b) Derive the solution of (2) just by observing the problem and using the shape of the
function f(x) in (a). (2 points)

Practical transportation problems are way more complex and an intuitive solution cannot
easily be found. Therefore, as an alternative consider the following convex problem

(p∗a, p
∗
b , z

∗
a1, z

∗
a2) = arg min

pa,pb,za1,za2
pa[log(pa)− 1] + pb[log(pb)− 1] + ca1za1 + ca2za2 + cbpb

(3)

subject to pa = za1 + za2,

0 ≤ za1 ≤ 1, 0 ≤ za2 ≤ 1,

pa + pb = 1.

Note that the variables za1 and za2 are continuous between 0 and 1. Also note that the
domain of the objective function is implicitly restricted due to the logarithm.

(c) Prove that problem (3) is convex. (2 points)

(d) Give the Lagrangian and the KKT conditions of problem (3). (3 points)

(e) From the above KKT conditions, derive the solution to (3) and show that the solution
for pa is the same as the solution to (2). Pay particular attention to the complementary
slackness conditions to set certain parameters to zero. (3 points)
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Solution

(a) First of all, to show that f(x) is non-convex, observe that the limit at ∞ is 1 and at
+∞ is 0. So the function looks like an inverse sigmoid function and is thus non-convex.
Replacing the argument with an affine function does not change the non-convexity.

(b) Obviously, at the optimal point, the constraint is reached with equality. Otherwise,
there would exist a better solution. Furthermore, as we observed in (a), the function
f(x) is monotonically decreasing. So the left-hand side of the first constraint is maximal
when the za1 = 1 and za2 = 0 since ca1 < ca2. The solution for pa then follows naturally.

(c) The constraints are all linear. The cost function is further linear in za1 and za2. Finally,
the second-order derivative of the cost towards pa is

∂2f(pa, za1, za2)

∂2pa
= 1/pa,

which is positive in the domain of the logarithm. The same holds for pb.

(d) The Lagrangian can be expressed as

L =pa[log(pa)− 1] + pb[log(pb)− 1] + ca1za1 + ca2cza2 + cbpb

+ λ(pa − za1 − za2)

− µ1za1 − µ2za2

+ τ1(za1 − 1) + τ2(za2 − 1)

+ ν(pa + pb − 1).

The KKT conditions are given by

• Primal constraints: pa = za1 + za2, 0 ≤ za1 ≤ 1, 0 ≤ za2 ≤ 1, pa + pb = 1.

• Dual constraints: µ1, µ2, τ1, τ2 ≥ 0.

• Complementary slackness: µ1za1 = µ2za2 = τ1(za1 − 1) = τ2(za2 − 1) = 0.

• Vanishing gradients:

∂L

∂pb
= log(pb) + cb + ν = 0 ⇒ p∗b =

e−cb

eν

∂L

∂pa
= log(pa) + λ+ ν = 0 ⇒ p∗a =

e−λ

eν

∂L

∂za1
= ca1 − λ− µ1 + τ1 = 0 ⇒ λ = ca1 − µ1 + τ1

∂L

∂za2
= ca2 − λ− µ2 + τ2 = 0 ⇒ λ = ca2 − µ2 + τ2

(e) From pa + pb = 1, we obtain eν = e−λ + e−cb and thus we have

p∗a =
e−λ

e−λ + e−cb
, p∗b =

e−cb

e−λ + e−cb
.
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As e−cb and e−λ are positive, neither p∗a, p
∗
b , z

∗
a1, z

∗
a2 can be 1, so τ1, τ2 = 0 from comple-

mentary slackness. With this information, we update

λ = ca1 − µ1

λ = ca2 − µ2

As pa is positive, µ1 and µ2 can not be both different from zero. Furthermore, we know
that µ1 and µ2 should be positive. Then the only option for λ = ca1 − µ1 = ca2 − µ2 to
be true is that λ is equal to the smallest cost, i.e., λ = ca1, µ1 = 0 and µ2 = ca2 − ca1.
So, the final solution for pa is

p∗a =
e−ca1

e−ca1 + e−cb
.

This is also the solution of (2).
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