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Question 1 (10 points)

For each of the following sets or functions, prove its convexity, concavity, or both/neither, by
using the definition or one of the properties of convex sets/functions.

Exercises

(a) The function f(x) = ∥x∥∞, for dom f = Rn.
(Show a proof, simply stating that norms are convex is not enough to get
the point.) (1 point)

(b) The function f(x) = ∥x∥0, for dom f = Rn. (2 points)

(c) The function f(x) = −(log(x))2, with dom f = R++. (2 points)

(d) The set S = S1 ∩ S2, where S1 = {ax1 + bx2 ∈ Rn | a, b ≥ 0} and
S2 = {x ∈ Rn | cTx ≤ b} for some non-zero c. (1 point)

(e) The set S = {g(c) | c ∈ C}, where g(x) = dTx+ b and C is some convex set. (2 points)

(f) Show that the dual cone, e.g., K∗ = {y | xT y ≥ 0, for all x ∈ K} of the cone K is
always convex. Do not forget to explain why the convexity of the dual cone does not
depend on the convexity of the original cone K. (2 points)

Solution

(a) Note that ∥x∥∞ = max{|x1|, . . . , |xn|}, which is a maximum over convex functions, and
thus convex. It would be neat to also show that |xi| is a convex function in xi.

(b) The function is neither convex nor concave. Two simple counter examples suffices. For
example x1 = [1, 0, 1]T and x2 = [1, 0, 0]T to disprove convexity, and x1 = [−1, 0, 1]T

and x2 = [1, 0, 0]T to disprove concavity.



(c) The second derivative is given by f ′′(x) = 2(log(x)−1)
x2 , for which f ′′(x) ≤ 0 if x ≤ e and

f ′′(x) ≥ 0 if x ≥ e. The function is concave for x ∈ (0, e] and convex for x ∈ [e,→).
Therefore, for dom f , the function is neither convex nor concave.

(d) The set is convex, since it is an intersection of two convex sets (a cone and a halfspace).

(e) Note that g(x) is an affine function w.r.t x. The image of a convex set (C) under an
affine function (g(x)) is/remains convex.

(f) Note that the dual cone is the intersection of a (infinite) set of homogeneous halfspaces
(i.e. of the form aT y). Hence it is a closed convex cone.

K∗ = {y | xT y ≥ 0, for all x ∈ K} =
⋂
x∈K

{y | xT y ≥ 0} (1)

Observe that a halfspace defined by {y | xT y ≥ 0} is convex for any selection of x.
Therefore, K∗ is convex even if K itself is not.
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Question 2 (9 points)

Let us consider the following quadratic minimization problem:

min
x

1

2
xTAx+ bTx,

with A =

[
p q
r p

]
and b =

[
s
q

]
.

(a) For which values of p, q, r, s is the above problem convex?

(1 points)

(b) For which values of p, q, r, s is the optimal point x∗ = 0?

Hint: the inverse of a 2× 2 matrix A =

[
a b
c d

]
is A−1 = 1

det(A)

[
d −b
−c a

]
(2 points)

Let us use a steepest descent algorithm to find the minimum. Let us consider the Ma-
halanobis norm for steepest descent, i.e. ||v||Σ =

√
vTΣ−1v, where Σ is a positive definite

covariance matrix.

(c) What is the steepest descent step for this norm? (1 point)

(d) Compute one iteration of the steepest descent step with exact line search, starting from

x0 =

[
1
−1

]
and assuming ∆xsd =

[
−1
2

]
, p = 2, q = −1 r = 1 and s = −3 (2 points)

(e) Compare the convergence of steepest descent with normalized steepest descent (still
considering exact line search). Which algorithm converges first? (1 point)

(f) Let us now consider Newton’s method with exact line saerch to find the optimum.
Show that for any A and b (given that the problem is convex and twice differentiable)
Newton’s method converges in one iteration. (2 points)

Solution

(a) It is convex if A is positive semi-definite. That is the case if p ≥ 0 and p2 ≥ rq. s is
arbitrary.

(b) The minimum is reached when Ax∗ = −b, that is, x∗ = −A−1b.

A−1 =

[
p q
r p

]−1

= 1
p2−rq

[
p −q
−r p

]
. Then,

x∗ = −A−1b = 1
p2−rq

[
p −q
−r p

] [
s
q

]
= 1

p2−rq

[
ps− q2

pq − rs

]
.

This vector equals 0 if:

• ps = q2 and pq = rs, or

• s = 0 and q = 0.
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(c) This is a special type of quadratic norm, with P = Σ−1. We have seen that for a
quadratic norm ||x||P =

√
xTP−1x the steepest descent step equals −P−1∇f(x). There-

fore, in this case, ∆xsd = −Σ∇f(x).

(d)

x(1) = x(0) + t∆xsd =

[
1
−1

]
+ t

[
−1
2

]
f(x(1)) =

1

2

[
1− t 2t− 1

] [2 −1
1 2

] [
1− t
2t− 1

]
+
[
−3 −1

] [ 1− t
2t− 1

]
=

= 5t2 − 5t

df

dt
= 10t− 5 = 0

t = 0.5

x(1) =

[
0.5
0

]
(e) Normalized steepest descent step is just a scaled version of steepest descent. Therefore,

exact line search will find the same optimal point along the same vector in each iteration.
There is no difference in convergence.

(f) The Newton step ∇2f(x)−1∇f(x) = −A−1(Ax+ b) = −x−A−1b.
The first iteration is x(1) = x(0) + t(−x0 −A−1b).
We have seen that the optimal point x∗ = −A−1b.
So, for t = 1 the result of the first iteration is indeed x1 = x0 − x0 + x∗ = x∗.
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Question 3 (11 points)

Consider the following quadratically constrained quadratic program (QCQP)

min
x1,x2

x21 + x22

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 + 1)2 ≤ 1

with variable x = [x1, x2]
T ∈ R2.

(a) Sketch the feasible set of the problem and level sets of the objective. From this sketch,
find the optimal point x∗ and the optimal value p∗. (2 points)

(b) Give the Lagrangian function as well as the KKT conditions. (3 points)

(c) From these KKT conditions, do there exist Lagrange multipliers that prove the x∗ from
(a) is optimal? Explain why or why not. (2 points)

(d) Derive the Lagrange dual problem. Is this dual problem convex? Explain why or why
not? (2 points)

(e) Solve the Lagrange dual problem. Is the dual optimum d∗ attained? Does strong duality
hold? Explain why or why not. (2 points)

Solution

(a) The level sets are circles around zero, and the two constraint sets are discs that touch
at the point [1, 0]T . So there is only one feasible point which is then also the solution
of the problem. As a result x∗ = [1, 0]T and p∗ = 1.

(b) The Lagrangian function is given by

L(x1, x2, λ1, λ2)

= x21 + x22 + λ1[(x1 − 1)2 + (x2 − 1)2 − 1] + λ2[(x1 − 1)2 + (x2 + 1)2 − 1]

= (1 + λ1 + λ2)x
2
1 + (1 + λ1 + λ2)x

2
2 − 2(λ1 + λ2)x1 − 2(λ1 − λ2)x2 + λ1 + λ2.

where λ1 ≥ 0 and λ2 ≥ 0. The KKT conditions are

(x1 − 1)2 + (x2 − 1)2 ≤ 1, (x1 − 1)2 + (x2 + 1)2 ≤ 1,

λ1 ≥ 0, λ2 ≥ 0,

2x1 + 2λ1(x1 − 1) + 2λ2(x1 − 1) = 0, (2)

2x2 + 2λ1(x2 − 1) + 2λ2(x2 + 1) = 0,

λ1[(x1 − 1)2 + (x2 − 1)2 − 1] = 0,

λ2[(x1 − 1)2 + (x2 + 1)2 − 1] = 0.

(c) At x∗ = [1, 0]T , (2) does not have a solution. So there do not exist Lagrange multipliers
to show that x∗ = [1, 0]T is optimal. This is due to the fact that there is no strictly
feasible point in the constraint set and hence Slater’s condition does not hold.
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(d) The Lagrange dual function is given by

g(λ1, λ2) = inf
x1,x2

L(x1, x2, λ1, λ2),

where L is derived in (b). If 1 + λ1 + λ2 < 0, then L is clearly unbounded below in x1
and x2. When, 1 + λ1 + λ2 ≥ 0, we can find the solutions for x1 and x2 by setting the
derivative of L with respect to x1 and x2 to zero. This leads to

x1 =
λ1 + λ2

1 + λ1 + λ2
,

x2 =
λ1 − λ2

1 + λ1 + λ2
.

Consequently, we have

g(λ1, λ2) =

−(λ1 + λ2)
2 + (λ1 − λ2)

2

1 + λ1 + λ2
+ λ1 + λ2, if 1 + λ1 + λ2 ≥ 0,

−∞, otherwise,

The Lagrange dual problem is finally given by

max
λ1,λ2

λ1 + λ2 − (λ1 − λ2)
2

1 + λ1 + λ2

s.t. λ1 ≥ 0, λ2 ≥ 0.

This problem is convex since the dual problem is always convex.

(e) Since g is symmetric, the optimum (if it exists) occurs at λ1 = λ2. Hence the maximum
is the same as the maximum of the function

g(λ) =
2λ

1 + 2λ
.

Hence, the maximum d∗ tends to 1 but will never be attained. So there is no strong
duality.
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Question 4 (10 points)

Consider a linear regression problem where you might have some outliers. In that case, instead
of a least squares problem, a robust least squares problem is useful. Such a problem is given
by

min
x

m∑
i=1

ϕ(aTi x− bi), (3)

where the loss function ϕ : R → R is defined as

ϕ(x) = min
y∈R

|y|+ 1

2
(x− y)2. (4)

This loss function is also known as the Huber penalty. The known parameters are the matrix
A ∈ Rm×n (with rows aTi ) and the vector b ∈ Rm (with entries bi).

(a) Prove that the above problem is convex. (2 points)

(b) Rewrite the above problem as an ℓ1-norm regularized least squares problem by plug-
ging (4) into (3). For this, you will need to introduce one new auxiliary variable yi
(replacing y in (4)) for every term in the sum of (3), leading to an additional optimiza-
tion variable y = [y1, . . . , ym]T ∈ Rm. (3 points)

(c) Can you now explain why this problem is robust to outliers compared to the classical
least squares problem? Which variable represents the outliers? (1 point)

(d) Now introduce an auxiliary variable t ∈ Rm to rewrite the ℓ1-norm term in the objective
function obtained in (b) as a linear function in t using two additional vector inequalities
based on y and t. What type of convex problem is this? (2 points)

(e) Can you think of another way to robustify the linear regression problem to outliers?
Please write down the suggested optimization problem. Note that there is no single
answer to this question. (2 points)

Solution

(a) First of all we need to prove that ϕ(x) is a convex function. For that we only need
to prove that f(x, y) = |y| + 1

2(x − y)2 is convex in x and y since the minimization is
over R which is convex. We know that |y| is convex and we can further derive that the
Hessian of 1

2(x− y)2 is

H =

[
1 −1
−1 1

]
=

[
1
−1

] [
1 −1

]
⪰ 0.

Hence, ϕ(x) is convex. Further, the convex function of an affine function remains convex
and a sum of convex functions also remains convex. Hence, the problem is convex.

(b) Introducing the variable y ∈ Rm, we can rewrite the optimization problem as

min
x

m∑
i=1

min
yi

(|yi|+
1

2
((aTi x− bi)− yi)

2),
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or as

min
x,y

m∑
i=1

|yi|+
1

2
((aTi x− bi)− yi)

2 = ∥y∥1 +
1

2
∥(Ax− b)− y∥2.

(c) It is clear that this problem tries to fit the data b to the model Ax in a least squares
sense up to a residual y which is forced to be sparse through the ℓ1 norm term.

(d) The problem in (b) is equivalent to the following problem

min
x,t,y

1T t+
1

2
∥(Ax− b)− y∥2

s.t. − t ≤ y ≤ t

Here t basically represents the modulus of the elements of y, i.e., |y|. This is a quadratic
program (QP).

(e) A simple way to do this is to force the error of the regression problem to be sparse.
This leads to

min
x

m∑
i=1

|aTi x− bi| = ∥Ax− b∥1.
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