
EE3S1 Signal Processing – DSP
Lecture 7: Fast Fourier Transform (FFT)

(Ch. 11)

Alle-Jan van der Veen

–

25 October 2025



Contents

Matrix representation of the DFT
[Ch. 10.4]

Radix-2 FFT [Ch. 11.1]

Fast convolution using the FFT
[Ch. 2.7, 11.8]

Carl Gauss

James Cooley

John Tukey

7. fft 2 / 1



Matrix representation of the DFT
Recall the DFT:

X [k] =
N−1∑
n=0

x [n] e−j 2π
N
kn =

N−1∑
n=0

x [n]W kn
N , k = 0, · · · ,N − 1

where WN = e−j
2π
N . Due to its linearity, this expression can be written

as a matrix-vector product:


X [0]
X [1]
X [2]

...
X [N − 1]

 =


W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2 · · · WN−1

W 0 W 2 W 4 · · · W 2(N−1)

...
...

...
. . .

...

W 0 WN−1 W 2(N−1) · · · W (N−1)(N−1)




x [0]
x [1]
x [2]

...
x [N − 1]


⇔ X = FN x

7. fft 3 / 1



Example

F2 =

[
1 1
1 −1

]
⇔

F4 =


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j


x[1]

−1
X [1]

X [0]x[0]

Calculation of an N × N matrix-vector product generally requires N2

complex operations (multiplications + additions)

Suppose N = 1000, then N2 = 1 million: very large!

Calculating the DFT for N = 2 and N = 4 doesn’t require any
multiplications, just additions.

7. fft 4 / 1



Inverse DFT
The IDFT is very similar:

x [n] =
1

N

N−1∑
k=0

X [k] e j
2π
N
kn =

1

N

N−1∑
k=0

X [k]W−kn
N , n = 0, · · · ,N − 1

In matrix form:
x [0]
x [1]
x [2]

...
x [N − 1]

 =
1

N


W 0 W 0 W 0 · · · W 0

W 0 W−1 W−2 · · · W−(N−1)

W 0 W−2 W−4 · · · W−2(N−1)

...
...

...
. . .

...
W 0 W−(N−1) W−2(N−1) · · · W−(N−1)(N−1)




X [0]
X [1]
X [2]

...
X [N − 1]


⇔ x = F−1

N X

Note that F−1
N = 1

NFH
N , where H denotes the complex conjugate

(=Hermitian) transpose.

7. fft 5 / 1



Orthogonality

F−1
N =

1

N
FH
N ⇒ FHF = N I

The columns of F are orthogonal to each other.

F is a unitary matrix (except for the factor N)

Proof: the i , jth element of the product FHF is

(FHF )i ,j =
N−1∑
n=0

W−in
N W jn

N =
N−1∑
n=0

e j
2π
N (i−j) =

{
N if i = j

0 otherwise

1 1 1 · · ·1
...

...
...

1 W−i W−2i · · ·W−(N−1)i

...
...

. . .
...

1 W−(N−1) W−2(N−1)· · ·W−(N−1)(N−1)




1· · ·1 · · ·1
1 W j · · ·W N−1

1· · ·W 2j · · ·W 2(N−1)

...
...

. . .
...

1· · ·W (N−1)j · · ·W (N−1)(N−1)

 = NI

7. fft 6 / 1



Cyclic convolution in matrix form

y [n] = h[n] ~ x [n] =
N−1∑
k=0

x [k]h[n − k mod N]


y [0]
y [1]
y [2]

...
y [N − 1]

 =


h[0] h[N − 1] h[N − 2] · · · h[1]
h[1] h[0] h[N − 1] · · · h[2]
h[2] h[1] h[0] · · · h[3]

...
...

...
. . .

...
h[N − 1] h[N − 2] h[N − 3] · · · h[0]




x [0]
x [1]
x [2]

...
x [N − 1]


⇔ y = H x

Matrix H has a cyclic Toeplitz structure: constant along diagonals.

7. fft 7 / 1



F diagonalizes a cyclic Toeplitz matrix

y [n] = h[n] ~ x [n] ⇔ y = Hx
(Cyclic) convolution becomes product in frequency domain:
Y [k] = H[k]X [k]

⇔


Y [0]
Y [1]
Y [2]

...
Y [N − 1]

 =


H[0]

H[1]
H[2]

. . .

H[N − 1]


︸ ︷︷ ︸

Λ


X [0]
X [1]
X [2]

...
X [N − 1]



Use Y = Fy and X = FX . This demonstrates that Λ = F−1HF is
diagonal

⇒ The columns of F are the eigenvectors of any cyclic Toeplitz
matrix, Λ contains the eigenvalues.

7. fft 8 / 1



Towards the FFT: Divide-and-conquer

Suppose we have a vector of N elements, and a task that requires
O(N2) operations to complete.

Example: sorting N numbers

A simple algorithm requires N2 comparisons

7

6

5

4

3

2

1

5

8

3

4

7

1

2

6
Complexity:
N2

8

(N = 8)

function sort(list)
for i ← 1 to N

find minimum in list
sorted[i] ← minimum
remove minimum from list

end
return sorted

7. fft 9 / 1



Divide-and-conquer (2)

Suppose we can split the task into two similar tasks, each on N/2
elements, and a way to merge the results. (This is the basis of
recursion.) Suppose the “merge” complexity is O(N).

Complexity: order
(
N
2

)2
+
(
N
2

)2
+ N = N2

2 + N [roughly half]

MergeSort algorithm

5

8

3

4

7

1

2

6 1

2

4

6

8

7

5

3

8

7

6

5

4

3

2

1

(N
2

)2 N

(N
2

)2

function sort(list)
split list in [list1, list2]
sorted1 ← sort(list1)
sorted2 ← sort(list2)
sorted ← merge(sorted1,sorted2)
return sorted

end

7. fft 10 / 1



Divide-and-conquer (3)
MergeSort algorithm

The recursion stops when we have 1
2N boxes, each comparing just 2

elements

Complexity: 1
2N. We need log2(N) stages.

Total complexity: order N log2(N); for large N much smaller than N2

This worked because the “merge” step had complexity O(N)

1

2

4

6

8

7

5

3

2

4

7

5

6

1

3

8 8

7

6

5

4

3

2

1

5

8

3

4

7

1

2

6

Complexity: here 3N
where 3 = log2(8) stages

7. fft 11 / 1



Computing the DFT using Divide-and-Conquer

Application of Divide-and-Conquer to the DFT:

Suppose we compute the DFT of two vectors with 1
2N elements, can

we efficiently “merge” these results?

For ease of discussion, we assume that N = 2M is a power of two
(otherwise, do zero padding on x [n])

Break down the N-point DFT to a cascade of smaller-size DFTs

Compute the smaller-size DFT recursively

Merge the smaller size DFT to get the N-point DFT

7. fft 12 / 1



Computing the DFT using Divide-and-Conquer

DFT is given by

X [k] =
N−1∑
n=0

x [n]e−j
2π
N kn , for k = 0, · · · ,N − 1

Split the summation into even and odd-indexed samples:

X [k] =

N/2−1∑
m=0

x [2m]︸ ︷︷ ︸
xe [m]

e−j
2π
N k(2m) +

N/2−1∑
m=0

x [2m + 1]︸ ︷︷ ︸
xo [m]

e−j
2π
N k(2m+1)

Rewrite the summation as follows:

X [k] =

N/2−1∑
m=0

xe [m]e
−j 2π

N/2
km

︸ ︷︷ ︸
Xe [k]

+e−j
2π
N k

N/2−1∑
m=0

xo [m]e
−j 2π

N/2
km

︸ ︷︷ ︸
Xo [k]

7. fft 13 / 1



Observation 1

X [k] =

N/2−1∑
m=0

xe [m]e
−j 2π

N/2
km

︸ ︷︷ ︸
Xe [k]

+e−j
2π
N k

N/2−1∑
m=0

xo [m]e
−j 2π

N/2
km

︸ ︷︷ ︸
Xo [k]

We compute the DFT of xe [m] and x0[m], each of 1
2N samples, then

combine.

The DFT of xe [m] is Xe [k] with 1
2N entries (k = 0, · · · , 1

2N − 1)

For k ≥ 1
2N, don’t recompute but use periodicity of the DFT:

Xe [k] = Xe [k − 1
2N] (k = 1

2N, · · · ,N − 1)

So we compute Xe [k] only for k < 1
2N, then duplicate.

(Same for Xo [k])

The e−j
2π
N k are twiddle factors [caused by delay of 1 sample]

7. fft 14 / 1



Butterfly diagram: N = 8

7. fft 15 / 1



Observation 2

Regarding the twiddle factors W k
N = e−j

2π
N k :

for k ≥ N/2 : e−j
2π
N k = −e−j

(
2π
N k −π

)
= −e−j

2π
N (k− 1

2
N)

or

k ≥ N/2 : W k
N = −W k− 1

2
N

N

So we only need to compute the twiggle factors for k = 0, · · · , 1
2N − 1.

(These are usually precomputed and stored.)

7. fft 16 / 1



Butterfly diagram: N = 8

The butterflies are actually DFT(N = 2) operations! (see slide ??)

7. fft 17 / 1



Entering a recursion
Apply the same idea to the DFT of order N/2!

Twiggle factors: used that W 1
4 = W 2

8 : need only 1 table for this.

7. fft 18 / 1



Radix-2 FFT
Continue the recursion until we get to size N = 2

This is the Radix-2 FFT, via decimation in time (meaning
downsampling). Number of stages: r = log2(N)

7. fft 19 / 1



Radix-2 FFT Implementation

Ordering of the samples follows from the repeated even/odd
partitioning (start at the right).

It can be obtained via bit-reversal:

0 = [0 0 0] → [0 0 0] = 0 → x [0]
1 = [0 0 1] → [1 0 0] = 4 → x [4]
2 = [0 1 0] → [0 1 0] = 2 → x [2]
3 = [0 1 1] → [1 1 0] = 6 → x [6]
4 = [1 0 0] → [0 0 1] = 1 → x [1]
5 = [1 0 1] → [1 0 1] = 5 → x [5]
6 = [1 1 0] → [0 1 1] = 3 → x [3]
7 = [1 1 1] → [1 1 1] = 7 → x [7]

Use zero padding to make N = 2r for some r , leading to r stages

7. fft 20 / 1



Computational complexity of Radix-2 FFT
Computational complexity:

We have r = log2 N stages, each with 1
2N butterflies, requiring 1

2N
complex multiplications and 3

2N complex additions

Total complexity is 1
2N log2 N complex multiplications and 3

2N log2 N
complex additions, so overall O(N log2 N)

For large N, this is much smaller than N2

7. fft 21 / 1



Decimation-in-Frequency FFT

Alternative to splitting x [n] into even/odd, split into lower/higher
blocks of 1

2N samples:

X [k] =
N−1∑
n=0

x [n]e−j
2π
N kn

=

N/2−1∑
n=0

x [n]e−j
2π
N kn +

N/2−1∑
n=0

x [n + N/2]e−j
2π
N k(n+N/2)

=

N/2−1∑
n=0

x [n]e−j
2π
N kn + e−j

2π
N kN/2

N/2−1∑
n=0

x [n +
1

2
N]e−j

2π
N kn

=

N/2−1∑
n=0

x [n]e−j
2π
N kn + (−1)k

N/2−1∑
n=0

x [n +
1

2
N]e−j

2π
N kn

7. fft 22 / 1



Decimation-in-Frequency FFT
Split into even and odd k resulting in two DFT’s of size 1

2N:

k = 2p, for 0 ≤ p < N/2:

X [2p] =

N/2−1∑
n=0

x [n]e−j
2π
N 2pn +

N/2−1∑
n=0

x [n +
1

2
N]e−j

2π
N 2pn

=

N/2−1∑
n=0

(x [n] + x [n +
1

2
N])e

−j 2π
N/2

pn

k = 2p + 1, for 0 ≤ p < N/2:

X [2p + 1] =

N/2−1∑
n=0

x [n]e−j
2π
N (2p+1)n −

N/2−1∑
n=0

x [n +
1

2
N]e−j

2π
N (2p+1)n

=

N/2−1∑
n=0

[(x [n]− x [n +
1

2
N])e−j

2π
N n]e

−j 2π
N/2

pn

7. fft 23 / 1



Decimation-in-Frequency FFT (N = 8)

This is a “transposed” network of the Decimation-in-Time structure

7. fft 24 / 1



Radix-2 Decimation-in-Frequency FFT (N = 8)

Complete the recursion on the 1
2N blocks:

7. fft 25 / 1



Cooley-Tukey Decomposition (mixed-radix FFT)
Beyond radix-2: Suppose we can factor N = PQ. We can then reduce
complexity by grouping x [n] into P segments of length Q:

Let n = Pq + p and k = Qs + r , then

e−j
2π
N kn =e−j 2π

N
(Qs+r)(Pq+p) =e−j 2π

N
(��Nsq+rp+Qsp+Prq) =e−j 2π

N
rpe−j 2π

Q
rqe−j 2π

P
sp

X [k] = X [Qs + r ] =
P−1∑
p=0

Q−1∑
q=0

x [Pq + p]e−j 2π
N
rpe−j 2π

Q
rqe−j 2π

P
sp

=
P−1∑
p=0

e−j 2π
N
rp

Q−1∑
q=0

x [Pq + p]︸ ︷︷ ︸
xp [q]

e−j 2π
Q
rq

 e−j 2π
P
sp

=
P−1∑
p=0

(
e−j 2π

N
rpXp[r ]

)
e−j 2π

P
sp = Yr [s]

First P DFTs of size Q, then twiggle, then Q DFTs of size P

7. fft 26 / 1



Cooley-Tukey Decomposition (mixed-radix FFT)
N = 12

Generalizes radix-2 for which P = 2 or Q = 2

This can be used to develop FFTs of more arbitrary sizes (recursively
to small prime factors).

7. fft 27 / 1



Summary

FFT is an algorithm for calculating the DFT and its inverse (using the
same approach)

FFT reduces the complexity from N2 to N log2 N by taking advantage
of O(N) “merge” properties

Since DFT can be used to perform filtering and spectral analysis,
FFT helps to implement these important operations efficiently

This has enabled the digital revolution with many applications that
otherwise would not exist (jpg, mp3, wifi, radar, MRI, · · · )

7. fft 28 / 1



Convolution of long sequences
Overlap-add method [ch. 2.7]

In some cases, x [n] is long and we process the convolution in blocks
(segments) xi [n] of the input data, each of length L.

x [n] =
∑
i

xi [n] ⇒ y [n] =
∑
i

xi [n] ∗ h[n]

If h[n] has length M, then yi [n] = xi [n] ∗ h[n] has length L + M − 1

⇒ a “tail” of M − 1 samples of yi [n] will extend into the next segment.

7. fft 29 / 1



Convolution of long sequences
Overlap-add method

xi+2

+

yi−1[n]

yi [n]

yi+1[n]

y [n] =
∑
i

yi [n]

x[n]

xixi−1 xi+1

Using zero padding, yi [n] = xi [n] ∗ h[n] can be implemented using a
cyclic convolution, which can be efficiently calculated using the FFT.

7. fft 30 / 1



Computational complexity

Let h[n] be of length M.

Split x [n] into dNL e segments of length L ≥ M.

For each segment:

Zero pad xi [n] and h[n] to length M + L− 1 Complexity:

FFT on the extended xi [n] and h[n] (once) (M + L− 1) log2(M + L− 1)

Multiply in frequency domain: Yi [k] = Xi [k]H[k] M + L− 1

Inverse FFT to obtain yi [n] of length M + L− 1 (M + L− 1) log2(M + L− 1)

Sum the results: y [n] =
∑

yi [n] M − 1

≈ 2L log2 L + 5L, if M = L

Total complexity: O(N log2 L) rather than O(NM) for a direct
implementation.

7. fft 31 / 1



To do:

Study the covered parts of chapter 11

Try to make exercise ...

Next lecture, we wrap up with a selected topic.

7. fft 32 / 1


