EE3S1 Signal Processing — DSP

Lecture 7: Fast Fourier Transform (FFT)
(Ch. 11)

Alle-Jan van der Veen

25 October 2025

3
TUDelft

Contents

m Matrix representation of the DFT
[Ch. 10.4]

= Radix-2 FFT [Ch. 11.1]

m Fast convolution using the FFT
[Ch. 2.7, 11.§]

ARl James Cooley

) John Tukey

<3
TUDelft

Matrix representation of the DFT
Recall the DFT:

N—-1 N—1
XK =" xlne %9 =S X Wg", k=0,--- N1
n=0 n=0

where W) = e /N . Due to its linearity, this expression can be written
as a matrix-vector product:

X[1 [we we we ... Wwo 7T x[0]

X[1] wo wi w2 ... whN-1 x[1]

X[l | = [wo w2 w4 wRIND) x[2]
XV —1y] wo wmr wetn a1

& X =Fyx

<3
TUDelft

Example

_ x[0] X[0]
F2:|:1 _1:| <~

x[1 X[1

11 1 1 (1] (1]

I I T A
Fa=11 39 1 41
1 j -1 -

m Calculation of an V x N matrix-vector product generally requires V°
complex operations (multiplications + additions)
Suppose N = 1000, then N? = 1 million: very large!

m Calculating the DFT for N = 2 and N = 4 doesn't require any
multiplications, just additions.

5
TUDelft

Inverse DFT
The IDFT is very similar:

1 N—-1 , 1 N-1
_ jFkn — — —kn —0.--- —
x[n]fNZX[k]efN =y 2 XKWy, n=0,r N—1
k=0 k=0
In matrix form:
x[0] we wo Wo WO X[0]
x[1] we w-t w2 s w1 X[1]
X2 | -1 (we w2 w4 ce WRN-Y) X[2]
: Nt : : - :
X[N.— 1] .WO .W—(N—l) .W—2(N—1) . W—(N—l)(N—l) X[N_]_]
& x=Fy'X
m Note that F,_,1 = lF,('/, where ' denotes the complex conjugate

(=Hermitian) transpose.

<3
TUDelft

Orthogonality

1

Fyl=
NN

Fi/ = F'F=NI

m The columns of F are orthogonal to each other.

m F is a unitary matrix (except for the factor V)

Proof: the i, jth element of the product F/F is
N—1 N—1 e
P 2m N ifi=j
FRFY =S wyrwin =N Wi =
()i Z NN nz;) 0 otherwise

n=0
11 1 -1 1...1 |
: 1 W/ W1
1 W—I W—2i .W_(N_l)i 1

WY o WR(N=1) — NI

.1 W—(V-1) .W_2(N_]_).) '_.VV_(N_l)(N_l) 1...WWN=1j. . .y (N-1)(N-1)

<3
TUDelft

Cyclic convolution in matrix form

N-1
y[n] = hln] @ x[n] =) _ x[k]h[n — k mod N]
k=0
y[o] | [Alo] AN—1] A[N-=2] .- h[1]] [x[0]]
y[1] h[1] h[o] AN —1] --- h[2] x[1]
yl2l | =| hl2 h[1] hio] -+ h[3] x[2]
y[N:—l] _h[N:—l] h[N:—2] h[N:—3] . th]_ _x[/v:— 1]

S y=Hx

Matrix H has a cyclic Toeplitz structure: constant along diagonals.

<3
TUDelft

F diagonalizes a cyclic Toeplitz matrix

y[n]=h[n]® x[n] & y="Hx

(Cyclic) convolution becomes product in frequency domain:
Y[k] = H[k]X[k]

vlo] 1 [H[O] X[0]

Y] H[1] X[1]

s | YR | = H[2] X[2]
_v[/v:— 1 | .-H[N —1], _X[N:— 1]

A

Use Y = Fy and X = FX. This demonstrates that A = F 17{F is
diagonal

= The columns of F are the eigenvectors of any cyclic Toeplitz
matrix, A contains the eigenvalues.

<2
TUDelft 7. fft

Towards the FFT: Divide-and-conquer

Suppose we have a vector of V elements, and a task that requires
O(N?) operations to complete.

m Example: sorting N numbers
A simple algorithm requires N2 comparisons

function sort(list)

fori< 1toN
find minimum in list
sorted[i] <— minimum
remove minimum from list

end

return sorted

0 N o O b~ W N =

o0 W N B~ = N O

P
TUDelft

Divide-and-conquer (2)

= Suppose we can split the task into two similar tasks, each on N /2
elements, and a way to merge the results. (This is the basis of
recursion.) Suppose the “merge” complexity is O(N).

Complexity: order (%)2 + (%)2 +N = N72 + N [roughly half]

MergeSort algorithm

6] 11
U P Y funcpop sc.)rt(l.lst) .
split list in [listl, list2]

1 4 3 sortedl <+ sort(list1)
4 -6, -4 sorted2 < sort(list2)
7 737Hf5 sorted <— merge(sorted1,sorted?2)
3| (5)? I return sorted

end
8| -7 7
5| 8| |8

5
TUDelft

Divide-and-conquer (3)

MergeSort algorithm

m The recursion stops when we have %N boxes, each comparing just 2
elements

Complexity: %N. We need log, (V) stages.
m Total complexity: order N log,(N); for large N much smaller than N?

m This worked because the “merge” step had complexity O(/V)

6 21 11 }-1

2—%—6— L2 (2

17—717%747 L3

4—%—4—_—6— - Complexity: here 3N
77—73f—f3f%f5 where 3 = log,(8) stages
37ﬁ777 -5 |6

87—757%777 -7

S—ﬁ—S— 8| |8

5
TUDelft

Computing the DFT using Divide-and-Conquer

Application of Divide-and-Conquer to the DFT:

m Suppose we compute the DFT of two vectors with %N elements, can
we efficiently “merge” these results?

For ease of discussion, we assume that N = 2 is a power of two
(otherwise, do zero padding on x[n])

m Break down the N-point DFT to a cascade of smaller-size DFTs
m Compute the smaller-size DFT recursively

m Merge the smaller size DFT to get the N-point DFT

5
TUDelft

Computing the DFT using Divide-and-Conquer

m DFT is given by
N=1 .21
X[k]:Zx[n]eﬁWk”, fork=0,--- ,N—1
n=0

m Split the summation into even and odd-indexed samples:

N/2—1 . N/2—1 o
XK= " xiem]e TNKCM 1 N x[om + 1] e T W AT
m=0 "l =0 lm]
m Rewrite the summation as follows:
N/2—1 . oy N/2-1 .
XK= > xe[mle T2 T 1 eI NE ST g [m]e WA
m=0 m=0
Xe[K] Xo[K]

<3
TUDelft

Observation 1

N/2—1 . o, N/2-1 .
XK= > xe[mle T2 T 1 eI WE N g [m]e W
m=0 m=0
Xe[K] Xo[k]

We compute the DFT of x.[m] and xo[m], each of 1V samples, then
combine.

m The DFT of xc[m] is Xc[k] with 3N entries (k =0, , 3N — 1)
For k > %N, don't recompute but use periodicity of the DFT:
XK = Xl = IN] (k= 3N, V1)
So we compute X.[k] only for k < %N, then duplicate.
(Same for X,[k])

.21
m The e /N ¥ are twiddle factors [caused by delay of 1 sample]

%
TUDelft 7. fft

Butterfly diagram: N =8

x{0] o— even: Xe[0] O X[0]
VI/:'

2] ¢ N/2-pt X1 “Butterfly
DFT

x[4] o— X[k] Xel2]

x[6] o— Xe[3]

A1] o— odd: Xol0]

1[3] o— N/2-pt X1
DFT

x[5] o— X [k] X[2]

x[7] o— X[31

<3
TUDelft

Observation 2

.27
Regarding the twiddle factors W) = e /N K

2 (21 .2
fork > N/2: e_JWﬂk = _eﬁ(N kiﬂ) = _e_JWﬂ(k_%N)
or)
k k—sN
k>N/2: Wy=-W,
: 1
So we only need to compute the twiggle factors for k = 0,--- , 5N — 1.

(These are usually precomputed and stored.)

<3
TUDelft

Butterfly diagram: N =8

x[0] o— X[0] < » O X[0]

2] o— N/2-pt X o 0 X[1]
DFT

x[4] o— Xo[k] Xel2] % é o X[2]

x[6] o— X[31 —T W W, X[3]

1] o— XJo1 o X[4]

\NN\/\/
F/XXS
N/2-pt \/
3] o—]/) = A = /\ < X[5]
x[5] O— X,[k] Al2] = - X[6]
x[7] o— X3] A@ X171

W =l

The butterflies are actually DFT(/N = 2) operations! (see slide ?7)

<2
TUDelft 7. fft

Entering a recursion
Apply the same idea to the DFT of order N /2!

o X[0]

o X[I]

o X[2]

O X[3]

o X[4]

o X[5]

o X[6)

o X[7]

Twiggle factors: used that W, = Wg: need only 1 table for this.

Delft 18/1

Radix-2 FFT

Continue the recursion until we get to size N =2

Stage 3

Stage 2

Stage 1

5 = 8 8 § @ § E
S Rk 5 K X ¥ ¥ 5
o (o} (o} o o (o} o o

WM . WM -

T vhe | [I le

A\ A - : N

okl Bl k] I
. S = e 2 = 2 =

This is the Radix-2 FFT, via decimation in time (meaning

downsampling). Number of stages: r = log, (/)

Radix-2 FFT Implementation

m Ordering of the samples follows from the repeated even/odd
partitioning (start at the right).
It can be obtained via bit-reversal:

0= 000 — [000 =0 — x[0
1 = 001 — [100 =4 — x4
2 = 010 — 010 =2 = x2
3 = 011 > [110 =6 — x
4 = 100 — 001 =1 = x[]
5 = 101 — [101 =5 — x5
6 = 110 — 011 = 3 = x[3
7 = [1 11 = [111 =7 = x7

m Use zero padding to make N = 2" for some r, leading to r stages

<3
TUDelft

Computational complexity of Radix-2 FFT

Computational complexity:

m We have r = log, IV stages, each with %N butterflies, requiring %N
complex multiplications and %N complex additions

= Total complexity is N log, N complex multiplications and 3V log, N
complex additions, so overall O(N log, V)

m For large N, this is much smaller than N2

x10°

10 106 .
—DFT —DFT
——FFT —FFT
28 z
3 3
g 210t
8 6 8
S s
g g
©
= 2
H 31
g 3
o 2 o
0 10° -
0 200 400 600 800 1000 0 200 400 600 800 1000
N N

<3
TUDelft

Decimation-in-Frequency FFT

Alternative to splitting x[n] into even/odd, split into lower/higher
blocks of %N samples:

N-1

.2
X[k] — Z X[n]e_JWﬂ-k"
n=0
N/2-1 . Nj2—1 .
=% Xl S o+ g KO
n=0 n=0
N/2—1 N2
=Y ele T TR Y o Lo s
n=0 —0
N/2—1 Nj2-1
2m 1 on
— Z x[n]e‘J /\T/rkn_;_(—l)k Z X[n—I—EN]e_J ,z,rkn
n=0 n=0

<3
TUDelft

Decimation-in-Frequency FFT
Split into even and odd k resulting in two DFT's of size %N:

mk=2p, for0<p<N/2:

N/2-1 . N/2-1 1
X[2p] = Z x[n]e™ W2 Z x[n+ = N]e_J 2en
n=0 n=0
N/2—-1 1 .
= Y (] +x[n+ 5/\/])e‘JNTﬂ’"
n=0

mk=2p+1,for0<p<N/2:
N/2-1 N/2—1

27 27
X[2p+]_] = Z X[n]e—JW(2P+1)n_ Z X[n—i—%N]eﬁW(sz)”
n=0 n=0
N/2—-1
Z [(x[n] = x[n+ 5 N])e sk "e ~JwijzPn
n=0

2
TUDelft 7. fft

Decimation-in-Frequency FFT (N = 8)

x[0] o —o0 X[0]

Al o x / N/2-pt —o X[2]

DFT

Xi[k] —O X[4]

(3] AN Lo XT6]

x[4] o —o X[1]

6

O

5] O_M_ﬁ N/2-pt o X[3]
X[6] © / / \\i~ §)Z[}: —0 X[5]

JNw
x7] o ¢ —o0 X[7]

=1 =

This is a “transposed” network of the Decimation-in-Time structure

<3
TUDelft

Radix-2 Decimation-in-Frequency FFT (N = 8)

Complete the recursion on the %N blocks:

+[0] o o X[0]
x[1] o s ? > W: 0 X[4]
x2] o \><></ ST o X[2]
3] o e Mo A1
4] o i/%é§g\£ o o X[1]
6] 0 / Sl ™ o X[3)
A7 o e > Sre—>50 XT7]

<3
TUDelft

Cooley-Tukey Decomposition (mixed-radix FFT)

Beyond radix-2: Suppose we can factor N = PQ. We can then reduce
complexity by grouping x[n] into P segments of length Q:

Let n = Pg—+ p and k = Qs + r, then

.2 . , . . .
eIk — g% (Qs+r)(Pa+p) _ o—i5 (MeGtrp+Qsp+Pra) _ o—j %P o=i G 14 =i % sp

P—-1Q-1
=27 227 Lo
X[k] = X[QS —+ r] — Z Z X[Pq + p]e—j%rpefjvrqe_J%sp
p=0 g=0
P—1 > Q-1 . .
=Y e WP | Y x[Pg+ple@ | eTEP
PZO qzoaf_/

Xp[q]

P—1
- Z (e_j%rpxp[rm eIFP = Yrls]
p=0

First P DFTs of size @, then twiggle, then @ DFTs of size P
1@(UDeIft 7. fft

Cooley-Tukey Decomposition (mixed-radix FFT)

N =12
we P-pt

[DFT o
s ®=3) =0 SPE]]
e X

W
7 U =l +O X[9]

A OXo 3
e =2 oo [C AR s=0
G QA7) s=1
e =3 O X[11]) =2

X[Pq+p]

Compute. Px Q-pt DFTs Multiply by N=PQ

twiddle factors

Compute. Q x P-pt DFTs

X[Qs+r]

m Generalizes radix-2 for which P =2 or Q =2

m This can be used to develop FFTs of more arbitrary sizes (recursively
to small prime factors).

5
TUDelft 27 /1

Summary

m FFT is an algorithm for calculating the DFT and its inverse (using the
same approach)

m FFT reduces the complexity from N2 to N log, N by taking advantage
of O(N) “merge” properties

m Since DFT can be used to perform filtering and spectral analysis,

FFT helps to implement these important operations efficiently

This has enabled the digital revolution with many applications that
otherwise would not exist (jpg, mp3, wifi, radar, MRI, - -)

5
TUDelft

Convolution of long sequences
Overlap-add method [ch. 2.7]

In some cases, x[n] is long and we process the convolution in blocks
(segments) x;[n] of the input data, each of length L.

x[n=>" xln = yn]= in[n] % h[n]

i

If h[n] has length M, then y;[n| = x;[n] * h[n] has length L+ M — 1

= a "tail" of M — 1 samples of y;[n] will extend into the next segment.

<3
TUDelft

Convolution of long sequences
Overlap-add method

x{r] |H||||H||||H||||H|||

Xi4+1 i Xj42

yizilr] |||I||||

yiln] |||‘||||
yisalnl |||I‘I||
ylnl =" iln]

i

Using zero padding, y;[n] = x;[n] * h[n] can be implemented using a
cyclic convolution, which can be efficiently calculated using the FFT.

<2
TUDelft 7. fft

Computational complexity

Let h[n| be of length M.
Split x[n] into [%1 segments of length L > M.

For each segment:
Zero pad x;[n] and h[n] to length M + L —1
FFT on the extended x;[n] and h[n] (once)
Multiply in frequency domain: Y;[k] = X;[k] H[K]
Inverse FFT to obtain y;[n] of length M + L —1
Sum the results: y[n] = > yi[n]

Complexity:
(M+L—1)logy(M+ L—1)
M+L-1
(M+L—1)log,(M+ L—1)
M-1

~ 2L logy L+ 5L, if M =L

Total complexity: O(N log, L) rather than O(NM) for a direct

implementation.

5
TUDelft

To do:

m Study the covered parts of chapter 11

m Try to make exercise ...

Next lecture, we wrap up with a selected topic.

3
TUDelft

