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Recap - DFT
The DFT X [k] is obtained by sampling the DTFT X (ω) of a length-N
sequence:

DTFT: X (ω) =
N−1∑
n=0

x [n]e−jωn

DFT: X [k] = X
(
2π
N k
)

=
N−1∑
n=0

x [n]e−j
2π
N kn

k = 0, · · · ,N − 1

N samples x [n] in time are mapped to N samples X [k] in frequency.

IDFT: x [n] =
1

N

N−1∑
n=0

X [k]e j
2π
N kn , n = 0, · · · ,N − 1

(Sampling gives rise to aliasing and periodicity, not the topic for today.)
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Recap - DFT

Reconstruction: X (ω) can be found back using interpolation:

X (ω) =
1

N

N−1∑
k=0

X [k]G
(
ω − 2π

N k
)

where G (ω) is the Dirichlet kernel, a “periodic sinc” function:

G (ω) =
sin(12ωN)

sin(12ω)
e−jω

N−1
2
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Resolution of the DFT [Ch. 10.2.6]

Suppose we sample a signal x(t) with rate Fs = 1
Ts

, and collect N

samples x [k]. The total time span is T = N Ts = N
Fs

.

The DFT gives us N samples X [k], spaced uniformly between 0 and 2π
on the ω-axis.

∆ω =
2π

N
[rad]

∆F =
Fs
N

[Hz]

Hence ∆F = 1
T !

∆ω

0 2

0

N − 1

2π

k

ω [rad]

0 Fs F [Hz]

π

1

Only depends on the total duration of the signal, the “aperture”

Does not depend on the sample rate or number of samples!

5. spectra 5 / 33



Zero padding [Ch. 10.5.1]
Suppose x [n] is zero except for n = 0, · · · , L− 1, and its DTFT is X (ω).

A DFT on the L samples gives X [k] (L samples), and we could use
interpolation with the Dirichlet kernel to find X (ω) for any ω.

But if our aim is to have more samples in frequency domain for a
nicer plot (larger N ⇒ smaller spacing 2π/N ⇒ smoother plot), it is
more convenient to use zero padding:

For any N ≥ L, the DFT of x [n] (i.e., the L nonzero samples, extended
with N − L zero samples) gives X [k], k = 0, · · · ,N − 1, which are
samples of X (ω).

Proof: Essentially, this follows from

X (ω) =
L−1∑
n=0

x [n]e−jωn =
N−1∑
n=0

x [n]e−jωn
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Zero padding
Example (L = 3)

Zero padding doesn’t give extra information, but improves visualization.

The actual resolution is not determined by N but by L (see later).
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DFT of a sinusoid [Ch. 10.2.5]

Complex exponential at a DFT frequency: x [n] = e j
2π
N `n

X [k] =
N−1∑
n=0

e j
2π
N `ne−j

2π
N kn

=
N−1∑
n=0

e j
2π
N (`−k)n

= Nδ[(k − `)N ] ω0

ω0 = 2π
N `

`

2π
k
ω

2

· · ·· · ·

X [k]

N − 1

0

0 1

Harmonic function: x [n] = e j(ω0n+φ0) results in

X [k] = e jφ0
N−1∑
n=0

e j(ω0− 2π
N
k)n =


N e jφ0δ(ω0 − 2π

N k) if ω0 = 2π
N `

e jφ0
1− e j(Nω0−2πk)

1− e j(ω0− 2π
N
k)

else

5. spectra 8 / 33



DFT of a sinusoid
Example 1

x [n] = sin(ω0n), 0 ≤ n ≤ N − 1

where ω0 is an integer multiple of 2π/N
e.g. ω0 = 2π · 5/N with N = 60:

Exactly an integer number of periods of the sinusoid are sampled.

X (ω) obtained via zero padding (red line) shows Dirichet functions
centered at the spikes
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DFT of a sinusoid
Example 2

x [n] = sin(ω0n), 0 ≤ n ≤ N − 1

where ω0 is not an integer multiple of 2π/N
e.g. ω0 = 2π · 5.5/N with N = 60:

In this case, ω0 falls in between two sample points. The peak could
be localized more accurately using zero padding.

The DFT can be used to estimate a frequency, but its resolution is
not great for small N.
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Spectral analysis using the DFT [Ch. 14.1]
We now look in more detail at the construction of spectra.

For a signal x [n], we would like to find

X (ω) ≡
∞∑

n=−∞
x [n]e−jωn

We need all the samples over an infinite interval.

However, in practice, we only have N samples of x [n] i.e., x̂ [n] with
n = 0, 1, · · · ,N − 1.

An estimate of X (ω) is

X̂ (ω) =
N−1∑
n=0

x [n]e−jωn

(In practice: DFT with zero padding to approximate a continuous ω)

How good is this estimate? And can we improve on it?
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Spectral analysis: general considerations

x̂ [n] can be viewed as a windowed version of x [n]:

x̂ [n] = x [n]w [n]
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Spectral analysis: general considerations
Due to the windowing, the spectrum of the finite sequence is expressed
as a convolution of the spectrum of the original sequence and the
Fourier transform of the window sequence:

x̂ [n] = x [n]w [n] ⇔ X̂ (ω) =
1

2π

π∫
−π

X (θ)W (ω − θ)dθ

For the rectangular window:

W (ω) =
N−1∑
n=0

e−jωn =
1− e−jωN

1− e−jω

=
sin(ωN/2)

sin(ω/2)
e−jω(N−1)/2
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Interpretation

Convolution in frequency domain by the Dirichlet kernel broadens
spectral lines in X (ω).

Assume x [n] is a sinusoid:

The red line is X̂ (ω) and is obtained by zero padding.

The spectal line is broadened, limiting the resolution, i.e. our ability
to distinguish closely spaced frequencies.

The windowed spectrum is spread out over the whole frequency range
– ”spectral leakage”.
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Rectangular window

W (ω) =
sin(ωN/2)

sin(ω/2)
e−jω(N−1)/2

• Main lobe has a width of
∆ω = 4π

N (distance between
two zero crossings)

• Sidelobes have an amplitude of
−13 dB.

N = 16
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Effect of windowing

• Spectral smoothing: Due to the non-zero width of the main lobe,
two closely spaced peaks in the Fourier spectum may appear as a
single peak in the DFT of the finite sequence.
This relates to resolution. To distinguish two closely spaced
frequencies, they need to be separated by more than the width of
the main lobe.

• Spectral leakage: The spectrum is spread out to the whole
frequency range. A weak peak in the original spectrum may be
masked by the “leakage” from a large peak.
This relates to contrast.
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Effect of windowing - spectral smoothing
x [n] = 1/3(cos(ω1n) + cos(ω2n)) , ω1 = 0.2π, with n = 0, 1, · · ·N − 1,
N = 100 and ω2 = 0.24π
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Spectral resolution and the rectangular window

The spectral resolution depends on the width of the main lobe of the
window function:

The spectrum W (ω) has its first zero-crossing at ω = 2π
N

Therefore, two spectral lines ω1 and ω2 are not distinguishable if
|ω1 − ω2| < 2π

N .

If |ω1 − ω2| ≥ 2π
N we will see two separate lobes in the frequency

spectrum.

Thus, the resolution is limited by the number of available samples N.
Zero padding will not help.
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Effect of windowing - spectral leakage / masking
x [n] = 1/3(cos(ω1n) + A cos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0, 1, · · ·N − 1, N = 100 and A = 1
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Effect of windowing - spectral leakage / masking
x [n] = 1/3(cos(ω1n) + A cos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0, 1, · · ·N − 1, N = 100 and A = 0.5
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Effect of windowing - spectral leakage / masking
x [n] = 1/3(cos(ω1n) + A cos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0, 1, · · ·N − 1, N = 100 and A = 0.25
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Effect of windowing - spectral leakage / masking
x [n] = 1/3(cos(ω1n) + A cos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0, 1, · · ·N − 1, N = 100 and A = 0.1
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

Triangular (Bartlett)
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

Hamming
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

Hann
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

Blackman
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

Kaiser
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Choice of the window function

In general, there is a trade-off between the width of the main lobe and
the amplitude of the sidelobes:
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Choice of window - Example 1
x [n] = 1/3(cos(ω1n) + A cos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0, 1, · · · ,N − 1, N = 100, A = 0.1 and using a rectangular window
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Choice of window - Example 1
x [n] = 1/3(cos(ω1n) + A cos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0, 1, · · · ,N − 1, N = 100, A = 0.1 and using a Hann window
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Summary: Spectral analysis using DFT

In the frequency domain, the spectrum (DTFT) of the finite sequence
is equivalent to the convolution of the DTFT of the infinite sequence
with the DTFT of the window sequence

The spectral resolution will depend on the width of the main lobe of
the window, which depends on the chosen window function and the
number of samples N

Zero-padding does not increase the spectral resolution but gives a
nicer-looking plot
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Short-term Fourier Transform (STFT) [Ch. 14.2]
For a non-stationary signal (book: “time-varying signal”(?)), the DFT
with a long N masks the changing nature. Remember the EE2S1 train
and DTMF signals; any speech signal.

Split the signal x [n] into shorter frames (segments) xm[n] of length L,
and apply a window wL[n]:

xm[n] = x [n]wL[n −mD]

The segments can be partially overlapping (D = frame offset).

wL[n −mD]

m = 0

D

1 2 3 4 · · ·

x1[n] x2[n] x3[n]
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Short-term Fourier Transform (STFT)

Compute the DFT of each segment

The result is a 2D time-frequency plot XL(ω,m): a spectrogram

XL(ω,m) =
∞∑

n=−∞
(x [n]wL[n −mD])e−jωn

Small L Large L
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Constant overlap-add criterion (COLA)

Suppose that the window parameters satisfy
∞∑

m=−∞
wL[n −mD] = 1,

then

x [n] =
∞∑

m=−∞
x [n]wL[n−mD]

and the STFT is an invertible transform.

∞∑
m=−∞

XL(ω,m) =
∞∑

m=−∞

( ∞∑
n=−∞

x [n]wL[n −mD]

)
e−jωn

=
∞∑

n=−∞
x [n]e−jωn = X (ω)
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Short-term Fourier Transform (STFT)

Many design choices:

trade-off between the time and frequency resolution:

large time window L ⇒ finer frequency resolution but coarser time
resolution

choice of window function (default is Hann)

overlap factor R = L−1
D , or fractional frame overlap R−1

R , e.g., 75%.

Python:

stft(x, fs, window=’hann’, nperseg=256, noverlap, nfft)

where L = nperseg, D = nperseg − noverlap, and nfft ≥ L allows
for zero padding.
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Power spectral density estimation [Ch. 14.3]
Random signals (stochastic processes) are part of SSP, and the
estimation of the power spectral density of a random signal is presented
in the final lectures, and analyzed in detail in EE4C03.

The next slides briefly show some connections:

For a WSS random signal x [n], the DTFT X (ω) is also random.
Therefore, we would look at E[|X (ω)|2].
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Power spectral density estimation
Since stationary random signals have infinite energy (= do not have a
Fourier transform), we have to look at power.

Let xN [n] be a window of N samples, then

ŜX (ω,N) =
1

N

∣∣∣∣∣
N−1∑
n=0

xN(n]e−jωn

∣∣∣∣∣
2

SX (ω) = lim
N→∞

ŜX (ω,N)

The estimator ŜX (ω,N) is called the periodogram, and SX (ω) is the
power spectral density (PSD).
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Welch’s method
The periodogram is very noisy (has a large variance). To improve, use
the STFT!

Split the signal into M shorter segments of length L (possibly
overlapping), and apply a window:

xm[n] = x [n]wL[n −mD]

Compute the DTFT (or rather DFT) of each segment:

ŜXm(ω, L) =
1

L

∣∣∣∣∣
L−1∑
n=0

xm[n]e−jωn

∣∣∣∣∣
2

Average the M segments! This will reduce the variance

ŜX (ω) =
1

M

M−1∑
m=0

ŜXm(ω, L)

This is the averaged modified periodogram, or the Welch method.
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Welch’s method
Random phase cosine in white noise, using a rectangular window:
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Welch’s method

For a finite number of samples N, which we split into M segments of
length L, we have a trade-off between large M (reduces variance) and
large L (increases spectral resolution).

For overlapping segments, data in the segments are not independent,
limiting the effect of averaging: keep D ≥ L

2 .

For proper measure, we must correct for the energy of the window,
divide by

∑L−1
n=0 w

2
L [n].

For a density, also divide by 2π (on an ω-axis) or by Fs (on a
frequency axis in Hz).

Python:

welch(x, window=’hann’, nperseg, noverlap, nfft)

where L = nperseg, D = nperseg − noverlap, and nfft ≥ L allows
for zero padding.
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To do:

Study the covered parts of chapters 10, 14

Try to make exercise ...

Next lecture, we look at ADCs.
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