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Recap - DFT
The DFT X|[k| is obtained by sampling the DTFT X(w) of a length-/V

sequence:
N—-1
DTFT: X(w)=>_ x[n]e /"
n=0
Nt .2 3
DFT: X[k] =X (37k) = Z x[nled Wk %
n=0

1 2
IDFT: x[n]:NZX[k]eka”7 n=0,---,N—1

(Sampling gives rise to aliasing and periodicity, not the topic for today.)
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Recap - DFT

Reconstruction: X(w) can be found back using interpolation:

2
=

1

X(w) = N

X[k]G (w — 27k)
0

>
I

where G(w) is the Dirichlet kernel, a “periodic sinc” function:

G(w) = sir?(%iuN) N1
sin(5w)
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Resolution of the DFT [Ch. 10.2.6]
Suppose we sample a signal x(t) with rate F; = %5 and collect N
samples x[k]. The total time spanis T = N T, = Fﬂs

The DFT gives us N samples X[k], spaced uniformly between 0 and 27
on the w-axis.

Aw
2w
Aw = — [rad] I I *
N |
i bl
1 0 T 21 w [rad]
Hence AF = + | 0 F. F[Hg

m Only depends on the total duration of the signal, the “aperture”

m Does not depend on the sample rate or number of samples!
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Zero padding [Ch. 10.5.1]
Suppose x|[n] is zero except for n =0,--- L —1, and its DTFT is X(w).

m A DFT on the L samples gives X[k| (L samples), and we could use
interpolation with the Dirichlet kernel to find X (w) for any w.

m But if our aim is to have more samples in frequency domain for a
nicer plot (larger N = smaller spacing 27 /N = smoother plot), it is
more convenient to use zero padding:

For any N > L, the DFT of x[n] (i.e., the L nonzero samples, extended
with N — L zero samples) gives X[k]|, k =0,---, N — 1, which are
samples of X (w).

Proof: Essentially, this follows from

L-1 _ N-1 '
X(w) = Zx[n]eﬂ“" = Z x[n]e "
n=0 n=0
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Zero padding

Example (L = 3)

3. k] _
1 ] /
EOH | A .o ARV .
0 2 4 6 0 2 4 6 8
31y a
x ;H” . ol FynTTTaeT "
0 5 10 15 0 5 10 15
3r !
51 o Trmmmﬂ k
0 10 20 30 0 10 20 30

Zero padding doesn't give extra information, but improves visualization.

The actual resolution is not determined by N but by L (see later).
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DFT of a sinusoid [Ch. 10.2.5]

.27
m Complex exponential at a DFT frequency: x[n] = g

N—1 .277% —‘2—7Tk
X[ =2 WreT W Xy wo =
n=0

N—1
_ Z e,'zﬁ(z—k)n
n=0

= No[(k — £)n]

= Harmonic function: x[n] = &/(“07+%) results in

N-1 i N e®5(wo — 3Tk)  if wo = 274
— oJ® j(wo— 7 k)n _ j(Nwo—21
XIk) = & Z e n ej¢°—1 — e/om2rld else
=0 . 27
n= 1 — of(wo—5k)
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DFT of a sinusoid

Example 1

x[n] =sin(won), 0<n<N-1
where wq is an integer multiple of 27 /N
e.g. wo =27 -5/N with N = 60:

55 59
m Exactly an integer number of periods of the sinusoid are sampled.

m X(w) obtained via zero padding (red line) shows Dirichet functions
centered at the spikes
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DFT of a sinusoid

Example 1

x[n] =sin(won), 0<n<N-1
where wq is an integer multiple of 27 /N
e.g. wo =27 -5/N with N = 60:

K M/hm
0
- - - 0 5 30
n

55 59
m Exactly an integer number of periods of the sinusoid are sampled.

m X(w) obtained via zero padding (red line) shows Dirichet functions
centered at the spikes
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DFT of a sinusoid

Example 2

x[n] =sin(wgn), 0<n<N-1

where wy is not an integer multiple of 27 /N
e.g. wp =27 -5.5/N with N = 60:

30 1
=20 -
“o gl H

o 1111 Tee il

0 5 30 55 59

k
m In this case, wq falls in between two sample points. The peak could
be localized more accurately using zero padding.

m The DFT can be used to estimate a frequency, but its resolution is
not great for small /V.
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DFT of a sinusoid

Example 2

x[n] =sin(wgn), 0<n<N-1

where wy is not an integer multiple of 27 /N
e.g. wp =27 -5.5/N with N = 60:

0 5 30 55 59
k

m In this case, wq falls in between two sample points. The peak could
be localized more accurately using zero padding.

m The DFT can be used to estimate a frequency, but its resolution is
not great for small /V.
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Spectral analysis using the DFT [Ch. 14.1]

We now look in more detail at the construction of spectra.

m For a signal x[n]|, we would like to find

o

X(w) = Z x[n]e7«n

n=—o00
We need all the samples over an infinite interval.
= However, in practice, we only have V samples of x[n] i.e., X[n] with
n=20,1,--- /N—1
An estimate of X(w) is

N-1

X(w) = x[n]e "

n=0

(In practice: DFT with zero padding to approximate a continuous w)

How good is this estimate? And can we improve on it?
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Spectral analysis: general considerations

X[n] can be viewed as a windowed version of x[n]:

x[n]

4 L L L L L L L L L L L L L |
10 105 11 115 12 125 13 135 14 145 15 155 16 165 17

(R e I R[n] = x[n]w]n]

L L L L L L L L L L L L L
10 105 11 115 12 125 13 135 14 145 15 155 16 165 17

1
4 [
2

0 05

115
time(s)
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Spectral analysis: general considerations

Due to the windowing, the spectrum of the finite sequence is expressed
as a convolution of the spectrum of the original sequence and the
Fourier transform of the window sequence:

L[] = x[nlw[n] < X(w 27r/X —0)do

For the rectangular window:

N—1 . 20
—jwn 1-— e_JWN
w)=) e = "
n=0 —
gw
_ sin(whN/2) o Jw(N-1)/2 )
sin(w/2)
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Interpretation

Convolution in frequency domain by the Dirichlet kernel broadens
spectral lines in X(w).

Assume x|n] is a sinusoid:

30 30
=20 =20
S <
10 10
0 0
0 5 30 55 59 0 5 30 55 59
k k

The red line is )A((w) and is obtained by zero padding.

m The spectal line is broadened, limiting the resolution, i.e. our ability
to distinguish closely spaced frequencies.

m The windowed spectrum is spread out over the whole frequency range
— "spectral leakage".

1,"U Delft 5. spectra



Rectangular window

main lobe

g10
W(w) _ Sir:'(WN/2) e—jw(N—l)/2 s sidelobe
sin(w/2)
0—4 3 2 1 0 1 2 3 4
, w
® Main lobe has a width of .
Aw = %7 (distance between ;3
two zero crossings) e
® Sidelobes have an amplitude of "
—13 dB. w0
-4 3 2 1 0 1 2 3 4
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Effect of windowing

® Spectral smoothing: Due to the non-zero width of the main lobe,
two closely spaced peaks in the Fourier spectum may appear as a
single peak in the DFT of the finite sequence.
This relates to resolution. To distinguish two closely spaced
frequencies, they need to be separated by more than the width of
the main lobe.

¢ Spectral leakage: The spectrum is spread out to the whole
frequency range. A weak peak in the original spectrum may be
masked by the “leakage” from a large peak.
This relates to contrast.

5
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Effect of windowing - spectral smoothing
x[n] = 1/3(cos(w1n) + cos(won)) , w1 = 0.2w, with n=0,1,--- N — 1,
N =100 and wy, = 0.247

;

=oh b # 4 d b Tb 4

< S 4 % % I I 4

Jli ° W
-1
n

20
3
X10

0 vy

/2

™

3n/2

27
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Effect of windowing - spectral smoothing
x[n] = 1/3(cos(w1n) + cos(won)) , w1 = 0.2w, with n=0,1,--- N — 1,
N =100 and w>, = 0.227

1
‘ \ i 1 ® ok
= o Lk s e TR 5
<" ¥y
-1
n
20
3
X 10+
0
/2

™

3n/2

27
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Effect of windowing - spectral smoothing
x[n] = 1/3(cos(w1n) + cos(won)) , w1 = 0.2w, with n=0,1,--- N — 1,
N =100 and w>, =0217

/2 T 3n/2 27
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Spectral resolution and the rectangular window

The spectral resolution depends on the width of the main lobe of the
window function:
2

m The spectrum VW(w) has its first zero-crossing at w = 57

m Therefore, two spectral lines wi and wo are not distinguishable if
2
w1 —wa| < -

mf |w; — wo| > % we will see two separate lobes in the frequency
spectrum.

Thus, the resolution is limited by the number of available samples /.
Zero padding will not help.
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Effect of windowing - spectral leakage / masking
x[n] = 1/3(cos(w1n) + Acos(wan)) , wi = 0.27, wy = 0.287 with
n=0,1,---N—1, N=100 and A=1

/2 T 3n/2 27
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Effect of windowing - spectral leakage / masking
x[n] = 1/3(cos(w1n) + Acos(wan)) , wi = 0.27, wy = 0.287 with
n=0,1,---N—1, N=100and A=0.5

x[n]

/2 T

3n/2

27

5. spectra




Effect of windowing - spectral leakage / masking
x[n] = 1/3(cos(w1n) + Acos(wan)) , wi = 0.27, wy = 0.287 with
n=0,1,---N—1, N=100 and A =0.25

05

x[n]

/2

™

3n/2

27
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Effect of windowing - spectral leakage / masking

x[n] = 1/3(cos(w1n) + Acos(wan)) , wi = 0.27, wy = 0.287 with
n=0,1,---N—1, N=100 and

A=0.1
0.5

x[n]

/2
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

m Triangular (Bartlett)

Bartlett w[n]

Bartlett W(w) [dB]
&

5
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

. [ OPYT TP
m Hamming
N=40

TTTTW WTTTT

0 5 10 15 20 25 30 35 40

Hamming w(n]

Hamming W(w) [dB]

5
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

m Hann T

I,

0 5 10 15 20 25 30 3

Hann w[n]
o
(&)

Hann W(o) [dB]
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

m Blackman
N=40

O;w??‘f ﬂﬂ HTTTT?

10 15 20 25 30 35 40
n

Blackman w[n]

Blackman W(w) [dB]
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Choice of the window function

We can consider other window functions! Recall from EE2S1 (on FIR
filter design):

m Kaiser _ 1 Nt i
: a,eegmo??TTﬂ ﬁTTT?%%

Kaiser W(w) [dB]
&

5
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Choice of the window function

In general, there is a trade-off between the width of the main lobe and
the amplitude of the sidelobes:

Aw_ |Ad,,, (dB)| s/ (dB/oct)
Rectangular| 47/ N -13 -6
Hamming | 87/N —43 -6
Hann 87/N =32 -18
Blackman |127/N -58 -18

—20 sl =
. NNNANA AT
% 40 ‘ U VTR VAT e
§760_ \\_ ROERES —58dB
Az ]
(0]
-7 -r/2 | e | 72 z
87/N
Aw=12x|N
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Choice of window - Example 1

x[n] = 1/3(cos(w1n) + Acos(wan)) , wi = 0.27, wy = 0.287 with
n=0,1,---

,N—1, N =100, A= 0.1 and using a rectangular window
0.5

x[n]

/2
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Choice of window - Example 1
x[n] = 1/3(cos(w1n) + Acos(wan)) , wi = 0.27, wy = 0.287 with
n=0,1, -

,N—1, N=100, A=0.1 and using a Hann window
0.5

x[n]

/2 T

3n/2

27

5. spectra




Summary: Spectral analysis using DFT

m In the frequency domain, the spectrum (DTFT) of the finite sequence
is equivalent to the convolution of the DTFT of the infinite sequence
with the DTFT of the window sequence

m The spectral resolution will depend on the width of the main lobe of
the window, which depends on the chosen window function and the
number of samples N/

m Zero-padding does not increase the spectral resolution but gives a
nicer-looking plot

5
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Short-term Fourier Transform (STFT) [Ch. 14.2]

For a non-stationary signal (book: “time-varying signal”(?)), the DFT
with a long NV masks the changing nature. Remember the EE2S1 train
and DTMF signals; any speech signal.

m Split the signal x[n] into shorter frames (segments) x,,[n] of length L,
and apply a window w; [n]:
Xm[n] = x[n]wy[n — mD]

The segments can be partially overlapping (D = frame offset).

wi [n — mD]

x1[n] x2[n] x3[n]
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Short-term Fourier Transform (STFT)

m Compute the DFT of each segment

The result is a 2D time-frequency plot X, (w, m): a spectrogram

o0

X(w,m)= " (x[n]wi[n— mD])e /"

n=—oo

w
|

5_
41 4
) 5
3 53_
> >
2 2
o =
14 1
0- 0L
' P 04 06 0 02 04 0.6
¢ 0. Time (s) : “ Time(s) :
Small L Large L

3
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Constant overlap-add criterion (COLA)

Suppose that the window parameters satisfy Z wi[n — mD] =1,

then C
x[n] = ; x[n]w[n—mD] 0- ..TTHHTT:._”,,
g AT .wL[n’—,le 5ot
0 el S

and the STFT is an invertible transform.

Z X (w, m) = Z ( Z x[n]WL[n—mD]> e Jjwn

m=—0o0 m=—0o0 n=—oo
[e.9]

= Z x[nle 4" = X(w)

n=—oo
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Short-term Fourier Transform (STFT)

Many design choices:

m trade-off between the time and frequency resolution:

large time window L =- finer frequency resolution but coarser time
resolution

m choice of window function (default is Hann)
m overlap factor R = L;Dl, or fractional frame overlap %, e.g., 715%.
Python:

stft(x, fs, window=’hann’, nperseg=256, noverlap, nfft)

where L = nperseg, D = nperseg — noverlap, and nfft > L allows
for zero padding.
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Power spectral density estimation [Ch. 14.3]

Random signals (stochastic processes) are part of SSP, and the
estimation of the power spectral density of a random signal is presented
in the final lectures, and analyzed in detail in EE4CO03.

The next slides briefly show some connections:

m For a WSS random signal x[n|, the DTFT X(w) is also random.
Therefore, we would look at E[|X(w)|?].
X0 X(9)
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Power spectral density estimation
Since stationary random signals have infinite energy (= do not have a
Fourier transform), we have to look at power.

m Let xy[n] be a window of V samples, then

N—1
Z xn(nje™“"
n=0

SX(W) - I\Ilinoo S\.X((“‘}a N)

2

~

1
Sx(w, N) = N

The estimator Sx(w, N) is called the periodogram, and Sx(w) is the
power spectral density (PSD).

— %5(&)— @,)
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Welch's method

The periodogram is very noisy (has a large variance). To improve, use
the STFT!

m Split the signal into M shorter segments of length L (possibly
overlapping), and apply a window:

Xm[n] = x[n] w[n — mD]

m Compute the DTFT (or rather DFT) of each segment:

2
me[n]e —wn
m Average the M segments! This will reduce the variance

. 1 M=
Sx(w) =4 > Sx,(w, 1)
m=0

This is the averaged modified periodogram, or the Welch method.

Sx,,

m
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Welch's method

Random phase cosine in white noise, using a rectangular window:

T
‘/55(@—%)
r M=1L=2500 - N =2500 BloLM) .
0_
=20+
¢ M=5L=500->N =2500
0_
g 20}
= L
2
)
S
=

- M=50L=50-N =2500 A
I 1 sin(az—a)D)L/zZ
T “w( i)
0 ) "

),
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Welch's method

m For a finite number of samples /V, which we split into M segments of
length L, we have a trade-off between large M (reduces variance) and
large L (increases spectral resolution).

m For overlapping segments, data in the segments are not independent,
limiting the effect of averaging: keep D > é

m For proper measure, we must correct for the energy of the window,
divide by Zﬁ;é w?[n].
For a density, also divide by 27 (on an w-axis) or by Fs (on a
frequency axis in Hz).

Python:
welch(x, window=’hann’, nperseg, noverlap, nfft)

where L = nperseg, D = nperseg — noverlap, and nfft > [ allows
for zero padding.
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To do:

m Study the covered parts of chapters 10, 14

m Try to make exercise ...

Next lecture, we look at ADCs.
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