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Sampling in frequency
Even if x [n] is time-discrete, X (ω) is continuous in ω.

But if we plot X (ω), we can plot only samples of it.

Suppose we plot only N samples, uniformly spaced on 0, · · · , 2π:

X [k] := X
(
2π
N k
)
, k = 0, · · · ,N − 1

How are these N samples related to the samples of x [n]? Of course,

X
(
2π
N k
)

=
∞∑

n=−∞
x [n]e−j

2π
N kn

But can we do with just N samples in time as well?

By duality, we expect sampling ⇔ periodicity

And as a consequence, issues around aliasing. . .
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Sampling in frequency
What do these N frequency samples tell us about x [n]?

X [k] = X
(
2π
N k
)

=
∞∑

n=−∞
x [n] e−j

2π
N kn

=
∞∑

m=−∞

(m+1)N−1∑
n=mn

x [n] e−j
2π
N kn

=
∞∑

m=−∞

N−1∑
n=0

x [n + mN] e−j
2π
N kn

=
N−1∑
n=0

( ∞∑
m=−∞

x [n + mN]

)
︸ ︷︷ ︸

x̃ [n]

e−j
2π
N kn

Thus, these N frequency samples are defined by a DTFT of N samples
(one period) of a periodic signal x̃ [n].
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Sampling in frequency

Define x̃ [n] =
∞∑

m=−∞
x [n + mN].

Gives rise to temporal aliasing

Periodic, defined by N samples in the “fundamental interval” (in
time) 0, · · · ,N − 1

If x [n] has length L ≤ N, then from x̃ [n] we can recover x [n] by
windowing. Otherwise, destructive aliasing.

L ≤ N

x̃[n]

x[n]
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Towards the DFT

As shown on slide 4, we have from the DTFT

DFT: X [k] =
N−1∑
n=0

x̃ [n] e−j
2π
N
kn , k = 0, · · · ,N − 1

Thus, N samples in time are related to N samples in frequency.

Can we invert this relation? Yes, we will show that

IDFT: x̃ [n] =
1

N

N−1∑
k=0

X [k] e j
2π
N
kn , n = 0, · · · ,N − 1

(Alternative viewpoint, explored later: the DFT is related to an N × N
matrix, and the IDFT to the inverse of that matrix.)
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Proof (4 pages)

Define the sample function s[n] (delta train∗) in time. The next page
shows that its corresponding DTFT S(ω) is a delta train in frequency:

s[n] =
∑
m

δ[n −mN] ⇔ S(ω) =
2π

N

∑
k

δ(ω − 2π
N k)

S(ω)

ω−2π 2π2π
N

− 2π
N

⇔
· · · · · ·

s[n]

· · ·· · ·· · · n2NN0−N· · ·−2N 0

(∗Book writes δ̃[n] instead of s[n].)
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Proof (2)
To show this, first derive

1

N

N−1∑
k=0

e j
2π
N
kn =

1

N

1− e j
2π
N
nN

1− e j
2π
N
n

=

{
1, n = 0,±N,±2N, · · ·
0, otherwise

= s[n]

(viz. Fourier Series). Then the DTFT is (for 0 ≤ ω < 2π)

S(ω) = F {s[n]} =
1

N

N−1∑
k=0

F{e j
2π
N
kn} =

2π

N

N−1∑
k=0

δ(ω − 2π
N k)

Outside the fundamental interval, the spectrum is periodic; for this,
extend the sum over all k = −∞ to ∞.

We used:

1 + x + x2 + · · ·+ xN−1 =
1− xN

1− x
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Proof (3)

Sample in frequency (product with delta train):

X̃ (ω) = X (ω) S(ω)

=
2π

N

∑
k

X (2πN k)δ(ω − 2π
N k)

On the interval 0 ≤ ω < 2π, we have just N samples X [k] = X (2πN k),
k = 0, · · · ,N − 1, scaled by 2π

N .

Corresponding convolution in time:

x̃ [n] = x [n] ∗ s[n] =
∞∑

m=−∞
x [n −mN]

This shows that sampling in frequency gives rise to a periodic
(aliased) sequence x̃ [n] in time.
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Proof (4)

Finally, we relate x̃ [n] to the samples X [k].

In terms of the X [k], the I-DTFT gives

x̃ [n] = F−1
{
X̃ (ω)

}
=

1

2π

∫ 2π

0
X̃ (ω)e jωndω

=
1

2π

2π

N

∫ 2π

0

N−1∑
k=0

X [k]δ(ω − 2π
N k)e jωndω

=
1

N

N−1∑
k=0

X [k]e j
2π
N
kn

We have shown that the samples X [k] correspond to x̃ [n], a periodic
extension of x [n]. The relation is given by the DFT / IDFT equations.
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DFT via DTFT

⇔

· · ·· · · · · ·

DFT (N = 10)

· · ·

⇔

DTFT

Properties of the DFT follow from those of the DTFT of their periodic
extensions: x̃ [n]⇔ X̃ (ω).
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DFT – No aliasing
Assume just L ≤ N samples of x [n] are nonzero, then

x̃ [n] = x [n] for n = 0, · · · ,N − 1

(no temporal aliasing). Then

DFT: X [k] =
N−1∑
n=0

x [n] e−j
2π
N
kn , k = 0, · · · ,N − 1

IDFT: x [n] =
1

N

N−1∑
k=0

X [k] e j
2π
N
kn , n = 0, · · · ,N − 1

This is the usual definition of the DFT, but it is valid only under the
assumption! The IDFT actually gives x̃ [n], a periodic sequence. Under
the assumption, one period is equal to x [n].

Since we recovered x [n], we could reconstruct X (ω): the N samples
X [k] are sufficient to define X (ω).
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DFT – Aliasing

If L > N, then the IDFT gives rise to temporal aliasing: the IDFT gives
x̃ [n], but the central samples of x̃ [n] are not equal to x [n].

In this case, the N samples X [k] are not sufficient to reconstruct X (ω).

· · ·

· · ·

· · · · · ·

· · ·

· · ·

ω

ω

k

k

ω

0

0 2π

21 · · · · · ·

X [k]

N − 1

X (ω)

DTFT

I-DTFT

2πwindowing

I-DTFT

π

0

X [k]

0

0 2π

1 2 N − 1· · · · · ·

sampling
π

π

x̃[n]
L ≤ N

x[n]

L > N
x̃[n]
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Reconstruction

Assume N ≥ L: no aliasing. We can express the spectrum X (ω) in
terms of the N samples X [k] = X (2πN k) using an interpolation formula:

X (ω) =
N−1∑
n=0

x [n]e−jωn DTFT; now use x [n] = x̃ [n]; insert IDFT

=
N−1∑
n=0

(
1

N

N−1∑
k=0

X [k]e j
2π
N
kn

)
e−jωn

=
N−1∑
k=0

X [k]

(
1

N

N−1∑
n=0

e−j(ω−
2π
N
k)n

)
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Reconstruction

Since

N−1∑
n=0

e−jωn =
1− e−jωN

1− e−jω
=

sin(12ωN)

sin(12ω)
e−jω

N−1
2 =: G (ω)

we conclude that

X (ω) =
1

N

N−1∑
k=0

X [k]G
(
ω − 2π

N k
)

G (ω) is the Dirichlet kernel, a “periodic sinc” function.
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Reconstruction
Alternative derivation:

The original sequence x [n] is obtained via windowing in time:

x [n] = x̃ [n] g [n] , where g [n] = u[n]− u[n − N]

g [n] is a pulse of length N which selects x [n].

The DTFT of g [n] is G (ω) (Dirichlet) as defined before.

A product in time gives convolution in frequency:

X (ω) =
1

2π
X̃ (ω) ∗ G (ω)

=
1

2π

∫ 2π

0

(
2π

N

∑
k

X [k]δ(θ − 2π
N k)

)
G (ω − θ) dθ

=
1

N

N−1∑
k=0

X [k]G (ω − 2π
N k)

(This derivation is analogous to reconstruction of time-domain sampling
with an ideal lowpass filter.)
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Reconstruction

-2 - 0 2
-0.5

0

0.5

1

|1
/N

 G
(

)|

N=9

Clearly, 1
NG (ω) is an interpolation function since

1
NG

(
2π
N k
)

=

{
1, k = 0

0, k = 1, · · · ,N − 1

so that the interpolation formula gives X (2πN k) = X [k].
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Reconstruction
Plots of |G (ω)| for various N:

The main lobe width is about 2π
N . This determines the resolution in

many applications.
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DFT of basic signals

Impulse: δ[n] ⇔ 1

ω
k

· · · · · ·

1

210 N − 1

0 2ππ

1

210 N − 1

· · ·
X [k]

· · ·

x[n]

Constant: 1 ⇔ Nδ[k]

ω
k

· · · · · ·
210 N − 1

0 2ππ

1

210 N − 1

x[n]

· · ·

· · ·

X [k]

· · ·
· · ·

N

4. dft 19 / 37



DFT of basic signals

Pulse (length L): g [n] ⇔ G [k]

g [n] = u[n]− u[n − L] , G [k] = L
sin( πN Lk)

sin( πN k)
e−j

π
N
(L−1)

0

0.5

1

x
[n

]

0 5 10 15 20

n

0

1

2

3

|X
[k

]|

0 5 10 15 20

k

(Note error in book wrt phase sign)
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DFT of basic signals

(Clipped) exponential sequence:

x [n] = an, n = 0, · · · ,N − 1⇒ X [k] =
N−1∑
n=0

ane−j
2π
N kn

=
N−1∑
n=0

ρnk with ρk = a e−j
2π
N k

(ρNk is due to clipping) =

N if ρk = 1

1− ρNk
1− ρk

otherwise

0

0.5

1

x
[n

]

0 5 10 15 20

n

0

1

2

3

4

|X
[k

]|

0 5 10 15 20

k

For small N, the X [k] do not sit on the plot of X (ω) = 1
1−ae−jω
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DFT of basic signals

Complex exponential (exactly periodic: frequency multiple of 2π
N )

e j
2π
N k0n ⇔ N δ[k − k0 mod N], k = 0, · · · ,N − 1

ω0 = 2π
N k0

k0
2π

k
ωω0

N − 10 1 2 1 2

· · ·· · ·

X [k]

0

N − 1

x [n] = e j
2π
N

k0n

0
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Properties
Let x [n], n = 0, · · · ,N − 1 ⇔ X [k], k = 0, · · · ,N − 1.
Underwater, the periodicity in time and frequency plays a role.

⇔

· · ·· · · · · ·

DFT (N = 10)

· · ·

⇔

DTFT

Properties of the DFT follow from those of the DTFT of their periodic
extensions x̃ [n]⇔ X̃ (ω)
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Circular time shift

Consider a delay (phase shift) of n0 samples in frequency domain. On
the extended sequence x̃ [n], we have

DTFT: x̃ [n − n0] ⇔ X̃ (ω)e−jωn0

Windowing x̃ [n − n0] to the interval 0, · · · ,N − 1 gives

DFT: x [n − n0 mod N] ⇔ X [k]e−j
2π
N kn0

In time, this is seen as a circular time shift.
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Circular time shift

x [n − n0 mod N] corresponds to a circular time shift over n0 samples

⇒

⇒

delay over 2 samples
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Circular time reversal
For a real sequence:

x [−n mod N] =

{
x [0] n = 0

x [N − n] n = 1, · · · ,N − 1
⇔ X ∗[k]

⇒

⇒

time reversal
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Complex conjugation
From the DTFT: x̃∗[n] ⇔ X̃ ∗(−ω), we find

x∗[n] ⇔ X ∗[−k mod N]

Mapping −k mod N to the interval 0, · · · ,N gives

DFT: x∗[n] ⇔ X ∗[N − k]

Hence, if x [n] is real, then X [k] = X ∗[N − k], and

|X [k]| = |X ∗[N − k]| magnitude spectrum is even

∠X [k] = −∠X [N − k] phase spectrum is odd

X [0] is real;

X [N/2] is real for even N
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Circular convolution

For the DTFT, a (linear) convolution maps to a product in frequency

For the DFT, such a result holds for x̃ [n] and ỹ [n]. This gives rise to a
cyclic convolution:

x [n] ~ y [n] :=
N−1∑
m=0

x [m]y [n −m mod N] ⇔ X [k]Y [k]
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Circular convolution

Compute a linear
convolution h[n] ∗ x [n],
then make periodic and
window to 1 period.
⇒
Becomes linear
convolution if
N ≥ Nx + Nh − 1

h[n]

x[n]

h[n] ∗ x[n]

y [n]
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Circular convolution
Alternative construction

Compute a linear
convolution h[n] ∗ x̃ [n]
with periodic input,
then window.

x̃[n]

y [n]

h[n]

h[n] ∗ x̃[n]
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Circular convolution

x [n] ~ y [n] ⇔ X [k]Y [k]

Proof: computing the IDFT of X [k]Y [k] gives

1

N

N−1∑
k=0

(
N−1∑
m=0

x [m]e−j
2π
N km

)(
N−1∑
`=0

y [`]e−j
2π
N k`

)
e j

2π
N kn

=
1

N

N−1∑
m=0

x [m]
N−1∑
l=0

y [`]
N−1∑
k=0

e j
2π
N k(n−`−m)

︸ ︷︷ ︸
=

N, n − `−m = 0 mod N

0, otherwise

=
N−1∑
m=0

x [m] y [n −m mod N]
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Linear convolution implemented by cyclic convolution

Circular convolution y [n] = x [n] ~ h[n] is equal to linear convolution
y [n] = x [n] ∗ x [n] if N ≥ Nx + Nh − 1.

Implication: if the condition holds, we can implement linear
convolution efficiently in frequency domain using Y [k] = X [k]H[k].

• Zero pad x [n] and h[n] to length N = Nx + Nh − 1
• Compute the DFTs X [k] and H[k], k = 0, · · · ,N − 1
• Compute Y [k] = X [k]H[k], k = 0, · · · ,N − 1
• Compute the IDFT to obtain y [n], n = 0, · · · ,N − 1.

The DFTs are efficiently computed using the FFT [future lecture],
with complexity O(N log2N).

This has enabled the digital revolution with many applications that
otherwise would not exist (jpg, mp3, wifi, radar, MRI, · · · )
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Multiplication
Multiplication in time ⇔ circular convolution

x [n] y [n] ⇔ 1

N
X [k] ~ Y [k]

Proof: dual of the proof for x [n] ~ y [n] (slide 31)

F{x [n]y [n]} =
N−1∑
n=0

(
1

N

N−1∑
m=0

X [m]e j
2π
N mn

)(
1

N

N−1∑
`=0

Y [`]e j
2π
N `n

)
e−j

2π
N kn

=
1

N2

N−1∑
m=0

X [m]
N−1∑
l=0

Y [`]
N−1∑
n=0

e−j
2π
N (k−`−m)n

︸ ︷︷ ︸
=

N, k − `−m = 0 mod N

0, otherwise

=
1

N

N−1∑
m=0

X [m]Y [k −m mod N]
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Circular frequency shift
Modulation is a spectial case of multiplication:

x [n] e j
2π
N k0n ⇔ X [k − k0 mod N]

Proof: Previously, we saw

y [n] = e j
2π
N k0n ⇔ Y [k] = δ[k − k0 mod N]

Insert in the “multiplication” result: the DFT of x [n]y [n] is

1

N
X [k] ~ Y [k] =

1

N

N−1∑
m=0

X [m]Y [k −m mod N]

=
1

N

N−1∑
m=0

X [m]Nδ[k − k0 −m mod N] = X [k − k0 mod N]
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Energy (Parseval)

Ex =
N−1∑
n=0

|x [n]|2 =
1

N

N−1∑
k=0

|X [k]|2

Proof:

N−1∑
n=0

|x [n]|2 =
N−1∑
n=0

x [n]x∗[n] =
N−1∑
n=0

x [n]

(
1

N

N−1∑
k=0

X [k]e j
2π
N kn

)∗

=
1

N

N−1∑
k=0

X ∗[k]

(
N−1∑
n=0

x [n]e−j
2π
N kn

)

=
1

N

N−1∑
k=0

X ∗[k]X [k] =
1

N

N−1∑
k=0

|X [k]|2
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Summary
Table 10.1 on p.690:

Linearity ax1[n] + bx2[n] aX1[k] + bX2[k]

Complex conjugate x∗[n] X ∗[N − k mod N]

Time shift x [n − n0 mod N] X [k]e−j
2π
N

kn0

Time reverse x∗[−n mod N] X ∗[k]

Frequency shift x [n]e j
2π
N

k0n X [k − k0 mod N]

Circ. convolution x [n]~ y [n] X [k]Y [k]

=
N−1∑
m=0

x [m]y [n −m mod N]

Multiplication x [n] y [n] 1
N
X [k]~ Y [k]

=
1

N

N−1∑
`=0

X [`]Y [k − ` mod N]

Parseval
N−1∑
n=0

|x [n]|2 1

N

N−1∑
k=0

|X [k]|2

Symmetry x [n] real X [k] = X [N − k mod N]

|X [k]| = |X [N − k mod N]|
∠(X [k]) = −∠(X [N − k mod N])
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To do:

Study chapter 10

Try to make exercise ...

Next lecture, we consider the construction of spectra (chapter 14). We
revisit the DFT later, when we look at the FFT (chapter 11).
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