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Sampling in frequency
Even if x[n] is time-discrete, X(w) is continuous in w.

m But if we plot X(w), we can plot only samples of it.

Suppose we plot only N samples, uniformly spaced on O, --- , 27:

X[kl =X (%K), k=0, ,N-1

m How are these V samples related to the samples of x[n]? Of course,

o0

X (35K = S xlnled Wk

n=—oo

But can we do with just V samples in time as well?

m By duality, we expect sampling < periodicity
And as a consequence, issues around aliasing. . .
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Sampling in frequency
What do these N frequency samples tell us about x[n]?
o0 .2
XKl =X (%K) =Y x[n]e /W’

=SS e

m=—0o0 n=mn

o0

N-1 .27
= Z Z x[n + mN] e SNk

m=—o00 n=0

N-1 00 o
= Z < Z x[n+ mN]) e SN

n=0 \m=—o0

A[r]
Thus, these N frequency samples are defined by a DTFT of N samples
(one period) of a periodic signal X[n].
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Sampling in frequency
Define X[n] = Z x[n+ mN].

m=—0o0
m Gives rise to temporal aliasing

m Periodic, defined by NV samples in the “fundamental interval” (in
time) 0,--- N — 1

m If x[n] has length L < N, then from X[n] we can recover x[n] by
windowing. Otherwise, destructive aliasing.

x[n]

_______ TTTT*?O_____ n

_vHHTTH___ HTTTHZ"UHTTH"_ .
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Towards the DFT

m As shown on slide 4, we have from the DTFT

N—-1
DFT: X[kl=Y &[ne %k, k=0, ,N-1
n=0

Thus, N samples in time are related to N samples in frequency.

m Can we invert this relation? Yes, we will show that

. - 27'rkn o
IDFT: X[n] NZX[k]e’ n=0,--

(Alternative viewpoint, explored later: the DFT is related to an N x N
matrix, and the IDFT to the inverse of that matrix.)
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Proof (4 pages)

Define the sample function s[n| (delta train®) in time. The next page
shows that its corresponding DTFT S(w) is a delta train in frequency:

sl =) dln—mN] & S Za

(*Book writes §[n] instead of s[n].)
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Proof (2)

To show this, first derive

'2lnN — « e
Sk _ 11— :{1, n=0,+N,+2N, .

—o N 1 e%n 0,  otherwise

(viz. Fourier Series). Then the DTFT is (for 0 < w < 27)

2
R

S kn 27
S(w) = f{s[n]}—ﬁz b= 213 e - )
k=

0

x
Il

Outside the fundamental interval, the spectrum is periodic; for this,
extend the sum over all kK = —c0 to oco.

We used:

T+x4+x2 4 +xV =" "
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Proof (3)

m Sample in frequency (product with delta train):
X(w) = X(w) S(w)

2T
= 2 X (5K - 3h)
k

On the interval 0 < w < 27, we have just N samples X[k] = X(37 k),
— 2
k=0,---,N—1, scaled by 5.
m Corresponding convolution in time:

o0

K[n] = x[n] «s[n] = Y x[n— mN]

m=—0oQ

This shows that sampling in frequency gives rise to a periodic
(aliased) sequence X[n] in time.
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Proof (4)

Finally, we relate X[n] to the samples X[k].
In terms of the X[k], the I-DTFT gives

st = F &)} = o /0 " K (w)e

™

=3 N, > X[Ko(w — 2 k) dw

We have shown that the samples X[k] correspond to X[n], a periodic
extension of x[n]. The relation is given by the DFT / IDFT equations.
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DFT via DTFT

g 05 DFT (N = 10)
A4

Properties of the DFT follow from those of the DTFT of their periodic
extensions: X[n| < X(w).
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DFT — No aliasing

Assume just L < N samples of x[n] are nonzero, then
X[n] =x[n] for n=0,--- ,N—1

(no temporal aliasing). Then

N—-1

DFT: X[k =Y x[n]e T, k=0, -
n=0

IDFT: x[n] = ZX[k]ef*k" n=0,--

This is the usual definition of the DFT, but it is valid only under the
assumption! The IDFT actually gives X[n]|, a periodic sequence. Under

the assumption, one period is equal to x|[n].

Since we recovered x[n|, we could reconstruct X(w): the N samples

X|[k] are sufficient to define X(w).
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DFT — Aliasing

If L > N, then the IDFT gives rise to temporal aliasing: the IDFT gives
X[n], but the central samples of X[n] are not equal to x[n].

In this case, the V samples X|[k| are not sufficient to reconstruct X(w).

x[n] X(w)
DTFT
/ OHTT?N \ N/ -
indowin L 0 T 27T w .
wind g& - o . sampling
- I-DTFT
mhm 111 mTTm oL Tteeseeet
0 L N 0‘12 i N—il k
I L>N |-DTFTX[kﬁ)T\;&;T./;././27r
TTHTTTT ITTTT[ITTTTH n >
-N 0 N o' 1 23 Nfli k
0 T 27w
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Reconstruction

Assume N > L: no aliasing. We can express the spectrum X(w) in
terms of the NV samples X[k] = X(%k) using an interpolation formula:

X(w) = x[n]e_j‘*’” DTFT; now use x[n] = X[n]; insert IDFT
- Z 1N 1X[k]ef2”‘” e e
N
N-1
— [k] Z _J(w_ k)”)

k=0 n:O

<3
TUDelft



Reconstruction

Since

Nzl gon _ LN sinGul) ey oy
€ T 1w sin(lw) © o
n=0 ?

we conclude that

=
-

1

X(w) = N

X[KIG (w — 2k)
0

-
Il

G(w) is the Dirichlet kernel, a “periodic sinc” function.
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Reconstruction
Alternative derivation:
The original sequence x|[n] is obtained via windowing in time:

x[n] = X[n] g[n] . where  g[n] = u[n] — u[n — N]
gl[n] is a pulse of length N which selects x[n].

m The DTFT of g[n] is G(w) (Dirichlet) as defined before.

m A product in time gives convolution in frequency:

X(w) = %X(w) * G(w)

LT (2/\7; S XIKIO(0 - 2,gk)> G(w— 0)do
k

::5;: .

1 N—1
= > X[KG(w — %5k)
k=0

<3
TUDelft



Reconstruction

[1/N G(w)|

-0.5

1, k=0
16(2Zk) = )
w e (3K) {0, k=1,--- ,N—1

so that the interpolation formula gives X (27 k) = X[k].
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Reconstruction
Plots of |G(w)| for various N:

o —
=0
|

P4

I

&

-8r 27 -7 0 T 2r 3w

1

I
0

8 27 -7w

=z
1]

n
o

™ 2r 3w

m The main lobe width is about %r This determines the resolution in
many applications.
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DFT of basic signals

® Impulse: §[n] < 1

x[n] X[K]
1 T
o' 1 2 m/vfl o 1 2 N¥13 k
0 T 27 w

m Constant: 1 < NJ[k]|

x[n]
1
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DFT of basic signals

m Pulse (length L): g[n] <  GJK]

n| = ufn| — u{n — = wef%(m)
gln] =uln] —uln—1L], Gk Lsin(%k) j

1

(Note error in book wrt phase sign)
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DFT of basic signals

» (Clipped) exponential sequence:

=
L

.2
X[n]:an7 NZO,"',N*1:>X[/(]: ane—JWkn
n=0
N—-1
. 2w,
= pl with p, =ae /N
n=0
(pﬁl is due to clipping) =<{1_ pLV .
otherwise
1 —pk
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DFT of basic signals

. . [ . 2
m Complex exponential (exactly periodic: frequency multiple of 57)

.2
dNR" o NSk—k mod N, k=0,---,N—1
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Properties
Let x[n], n=0,--- ,N—-1 < X[k], k=0,--- ,N—1
Underwater, the periodicity in time and frequency plays a role.

1 34
_2
g 05 DFT (N = 10) =
= T
0 0
0 5 10 0 5 10
n k
2
1
r'y
DTFT 45
< =
= 21
w051 LT
0.5
0 0
10 0 10 20 27 0 2r 4z
n w
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Circular time shift

Consider a delay (phase shift) of ny samples in frequency domain. On
the extended sequence X[n|, we have

DTFT: X[n—ng] & X(w)e Jwm

® Windowing X[n — ng| to the interval 0,--- , N — 1 gives

.2
DFT: x[n—ny mod N] & X[k]eﬁﬁkn0

In time, this is seen as a circular time shift.
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Circular time shift

x[n— ng mod NJ corresponds to a circular time shift over ny samples

1 L) — 1
P4
o
delay over 2 samples g
= [N
Los - % 05
I
=
0 L > 0
0 5 10 0 5 10
n n
1 L — 1
[}
I
— £
£ =
= 0.5 = 0.5
=
=
0 0
-10 0 10 20 -10 0 10 20




Circular time reversal
For a real sequence:

0 =0
x[—=n mod N] = x[0] " < XK
x[N—n n=1,--- /N—-1
1 L) 1w
A i = I
_ time reversal .é
o
00 5 10 ” 00 5 10
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Complex conjugation
From the DTFT: X*[n] < X*(—w), we find

x*[n] < X*[-k mod N]

m Mapping —k mod N to the interval 0,--- , N gives
DFT: x*[n] < X*[N — K]

Hence, if x[n| is real, then X[k] = X*[N — k], and

IX[K]| = | X*[N — K] magnitude spectrum is even
LX[k] = —4ZX[N — K] phase spectrum is odd
X[0] is real;

X[N/2] is real for even N
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Circular convolution

For the DTFT, a (linear) convolution maps to a product in frequency
For the DFT, such a result holds for X[n] and y[n]. This gives rise to a
cyclic convolution:
N—1
x[nl@y[n] := > x[mly[n—m mod N] <  X[k] Y[K]

m=0
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Circular convolution

hln]
3
'E2
<1
0 ##TTT??"GGG###%%%%%##‘
0 5 10 15 20
. n
Compute a linear s
. <l
convolution h[n] * x[n], =2
. . x
then make periodic and Tomnm
. . (L = = 2 L B o
window to 1 period. ° s ® 20
= =* *?
. £ 3 3 hln] * x[n
Becomes linear Ee I y
convolution if < HTT TT?.HHH‘
0 5 10 15 20
N>N,+N,—1 o S
4 os?
= f yln]
ST
0
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Circular convolution

Alternative construction

Ej==ITT??;'===%====%jl==m
Compute a inear L.,
e o, g
At

0 5 10 15 20

g 1101
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Circular convolution
x[nj@y[n] &  X[k] Y[K]

Proof: computing the IDFT of X[k]Y[k] gives

1 N-1 /N-—1 o N—-1
N (Zx[m]ew”’) (Zy[é]e JW) S
k=0

=
N— N— o
N Z [E] ejWk(anfm)
/=0

m=0 k=0

JN, n—¢—m=0 mod N
0, otherwise

=
.L

x[m]y[n—m mod N|
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Linear convolution implemented by cyclic convolution

m Circular convolution y[n| = x[n] & h[n] is equal to linear convolution
y[n] = x[n] * x[n] if N > Ny + N, — 1.

m Implication: if the condition holds, we can implement linear
convolution efficiently in frequency domain using Y'[k] = X[k] H[k].

Zero pad x[n] and h[n] to length N = N, + N, — 1
Compute the DFTs X[k] and H[k|, k =0,--- N —1
Compute Y[k| = X[k| H[k], k=0,--- N —1
Compute the IDFT to obtain y[n], n=10,--- , N — 1.

m The DFTs are efficiently computed using the FFT [future lecture],
with complexity O(N log, V).
This has enabled the digital revolution with many applications that
otherwise would not exist (jpg, mp3, wifi, radar, MRI, -- )
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Multiplication

Multiplication in time < circular convolution
1
x[nly[n] < NX[k] ® Y[K]
Proof: dual of the proof for x[n] @ y[n| (slide 31)

— 1 — ;21 1 Nt .2m .27
Fixlnlylnly = 3 (,\, > X [m]eJN'"”) (N Yy Y[e]efwf"> ek
n=0 m=0 /=0
1 N—-1 N—-1 N—1 o
=5 Z X[ml] Z Y[ Z o7 (k—t=m)n
m=0 =0 n=0

)N, k—f—m=0 mod N
N 0, otherwise

N—1
1
=N E X[m] Y[k —m mod N]
m=0
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Circular frequency shift
Modulation is a spectial case of multiplication:

.21
x[n] N " o X[k — ko mod N]

Proof: Previously, we saw

y[n] = LU Y[k] = 6]k — ko mod N]

Insert in the "multiplication” result: the DFT of x[n]y[n] is

1 1 N1
—X[k]® Y[k] = — X[m] Y[k — m mod N]
N N =
;N1
=N X[m] Né[k — ko — m mod N| = X[k — ko mod N]
m=0
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Energy (Parseval)

N1 L Nl
Ec= Y IxnlP = &> IXIKIP
n=0 k=0
Proof:
= — 1 Nt .2 ’
Z X[ =D xlnlx[n] = 3 x[n] (N X[k]ef’an>
n=0 n=0 k=0
1 N—-1 N—1
=5 2 X <Zx[n]e i Nkn)
k=0 n=0
1 v L N1
=N [KX[K] = 5 D IXIKP
k=0 k=0
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Summary
Table 10.1 on p.690:

Linearity axi[n] + bxx[n] aXi[k] + bXa[k]

Complex conjugate  x*[n] X*[N — k mod N]
2T

Time shift x[n — no mod N] X[k]e™ W kmo

Time reverse x*[—n mod N] X*[k]
2T
Frequency shift x[n]e/ W Fon X[k — ko mod N]
Circ. convolution x[n] ® y[n] X[k] Y[K]
N—1
= Zx[m]y[n — m mod N]
m=0
Multiplication x[n]y[n] L X[k] ® YT[k]
N—1
1
=% > X[AY[k £ mod N]
(=
N—1 L vt °
P [ : = IX[K]P
arseva ; |x[nl| \ g X[
Symmetry x[n] real X[k] = X[N — k mod N]|

IX[K]| = |X[N — k mod N]|
Z(X[K]) = —=Z(X[N — k mod N])
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To do:

m Study chapter 10

m Try to make exercise ...

Next lecture, we consider the construction of spectra (chapter 14). We
revisit the DFT later, when we look at the FFT (chapter 11).
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