

EE3S1 Signal Processing – DSP

Lecture 4: Discrete Fourier Transform (Ch. 10)

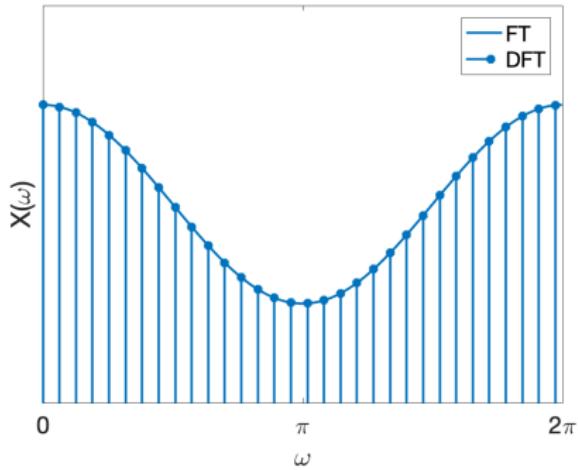
Alle-Jan van der Veen

–

19 October 2025

Contents

- Sampling in frequency
- Definition of the DFT, derivation of the Inverse DFT
- Aliasing
- DFT of basic signals
- Properties:
 - Zero padding (interpolation property) [Lecture 5]
 - Cyclic vs. linear convolution
 - Fast computation using the FFT [Lecture 7]



Sampling in frequency

Even if $x[n]$ is time-discrete, $X(\omega)$ is continuous in ω .

- But if we plot $X(\omega)$, we can plot only samples of it.

Suppose we plot only N samples, uniformly spaced on $0, \dots, 2\pi$:

$$X[k] := X\left(\frac{2\pi}{N}k\right), \quad k = 0, \dots, N-1$$

- How are these N samples related to the samples of $x[n]$? Of course,

$$X\left(\frac{2\pi}{N}k\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\frac{2\pi}{N}kn}$$

But can we do with just N samples in time as well?

- By duality, we expect sampling \Leftrightarrow periodicity

And as a consequence, issues around aliasing...

Sampling in frequency

What do these N frequency samples tell us about $x[n]$?

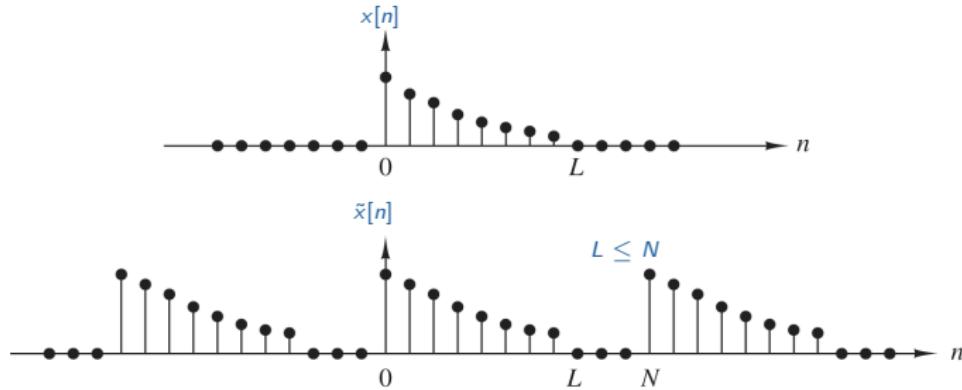
$$\begin{aligned} X[k] &= X\left(\frac{2\pi}{N}k\right) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{m=-\infty}^{\infty} \sum_{n=mn}^{(m+1)N-1} x[n] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{m=-\infty}^{\infty} \sum_{n=0}^{N-1} x[n + mN] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{n=0}^{N-1} \underbrace{\left(\sum_{m=-\infty}^{\infty} x[n + mN] \right)}_{\tilde{x}[n]} e^{-j\frac{2\pi}{N}kn} \end{aligned}$$

Thus, these N frequency samples are defined by a DTFT of N samples (one period) of a periodic signal $\tilde{x}[n]$.

Sampling in frequency

Define $\tilde{x}[n] = \sum_{m=-\infty}^{\infty} x[n + mN]$.

- Gives rise to temporal aliasing
- Periodic, defined by N samples in the “fundamental interval” (in time) $0, \dots, N - 1$
- If $x[n]$ has length $L \leq N$, then from $\tilde{x}[n]$ we can recover $x[n]$ by windowing. Otherwise, destructive aliasing.



Towards the DFT

- As shown on slide 4, we have from the DTFT

$$\text{DFT: } X[k] = \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\frac{2\pi}{N} kn}, \quad k = 0, \dots, N-1$$

Thus, N samples in time are related to N samples in frequency.

- Can we invert this relation? Yes, we will show that

$$\text{IDFT: } \tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N} kn}, \quad n = 0, \dots, N-1$$

(Alternative viewpoint, explored later: the DFT is related to an $N \times N$ matrix, and the IDFT to the inverse of that matrix.)

Proof (4 pages)

Define the sample function $s[n]$ (delta train*) in time. The next page shows that its corresponding DTFT $S(\omega)$ is a delta train in frequency:

$$s[n] = \sum_m \delta[n - mN] \Leftrightarrow S(\omega) = \frac{2\pi}{N} \sum_k \delta(\omega - \frac{2\pi}{N}k)$$

(*Book writes $\tilde{\delta}[n]$ instead of $s[n]$.)

Proof (2)

To show this, first derive

$$\frac{1}{N} \sum_{k=0}^{N-1} e^{j \frac{2\pi}{N} kn} = \frac{1}{N} \frac{1 - e^{j \frac{2\pi}{N} nN}}{1 - e^{j \frac{2\pi}{N} n}} = \begin{cases} 1, & n = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases} = s[n]$$

(viz. Fourier Series). Then the DTFT is (for $0 \leq \omega < 2\pi$)

$$S(\omega) = \mathcal{F}\{s[n]\} = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{F}\{e^{j \frac{2\pi}{N} kn}\} = \frac{2\pi}{N} \sum_{k=0}^{N-1} \delta\left(\omega - \frac{2\pi}{N} k\right)$$

Outside the fundamental interval, the spectrum is periodic; for this, extend the sum over all $k = -\infty$ to ∞ .

We used:

$$1 + x + x^2 + \dots + x^{N-1} = \frac{1 - x^N}{1 - x}$$

Proof (3)

- Sample in frequency (product with delta train):

$$\begin{aligned}\tilde{X}(\omega) &= X(\omega) S(\omega) \\ &= \frac{2\pi}{N} \sum_k X\left(\frac{2\pi}{N}k\right) \delta\left(\omega - \frac{2\pi}{N}k\right)\end{aligned}$$

On the interval $0 \leq \omega < 2\pi$, we have just N samples $X[k] = X\left(\frac{2\pi}{N}k\right)$, $k = 0, \dots, N-1$, scaled by $\frac{2\pi}{N}$.

- Corresponding convolution in time:

$$\tilde{x}[n] = x[n] * s[n] = \sum_{m=-\infty}^{\infty} x[n - mN]$$

This shows that sampling in frequency gives rise to a periodic (aliased) sequence $\tilde{x}[n]$ in time.

Proof (4)

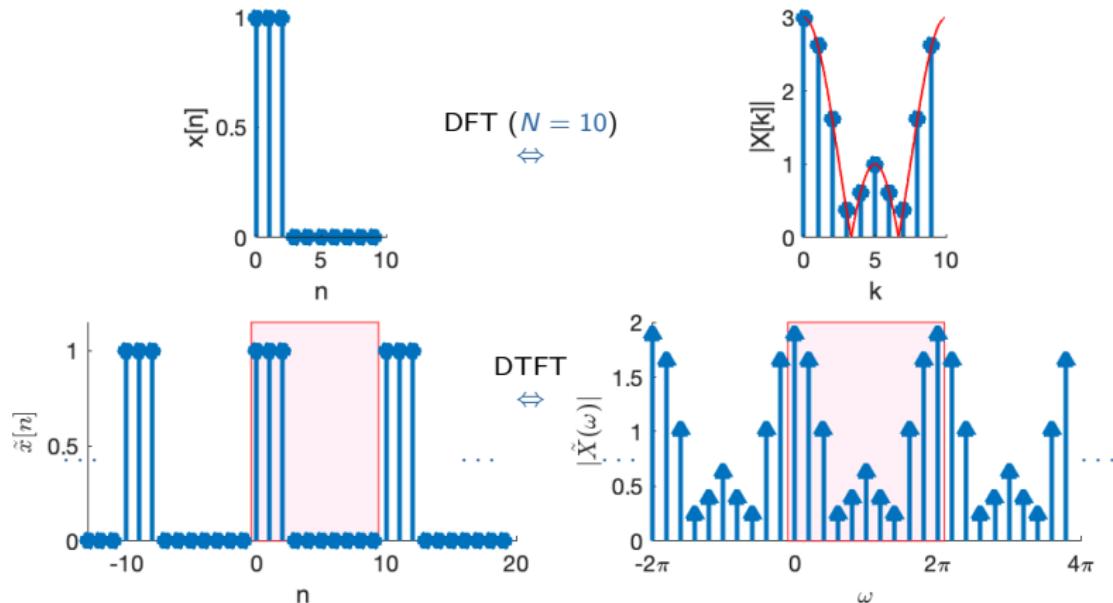
Finally, we relate $\tilde{x}[n]$ to the samples $X[k]$.

In terms of the $X[k]$, the I-DTFT gives

$$\begin{aligned}\tilde{x}[n] &= \mathcal{F}^{-1} \left\{ \tilde{X}(\omega) \right\} = \frac{1}{2\pi} \int_0^{2\pi} \tilde{X}(\omega) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \frac{2\pi}{N} \int_0^{2\pi} \sum_{k=0}^{N-1} X[k] \delta(\omega - \frac{2\pi}{N} k) e^{j\omega n} d\omega \\ &= \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} k n}\end{aligned}$$

We have shown that the samples $X[k]$ correspond to $\tilde{x}[n]$, a periodic extension of $x[n]$. The relation is given by the DFT / IDFT equations.

DFT via DTFT



Properties of the DFT follow from those of the DTFT of their periodic extensions: $\tilde{x}[n] \Leftrightarrow \tilde{X}(\omega)$.

DFT – No aliasing

Assume just $L \leq N$ samples of $x[n]$ are nonzero, then

$$\tilde{x}[n] = x[n] \quad \text{for } n = 0, \dots, N-1$$

(no temporal aliasing). Then

$$\text{DFT: } X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} kn}, \quad k = 0, \dots, N-1$$

$$\text{IDFT: } x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} kn}, \quad n = 0, \dots, N-1$$

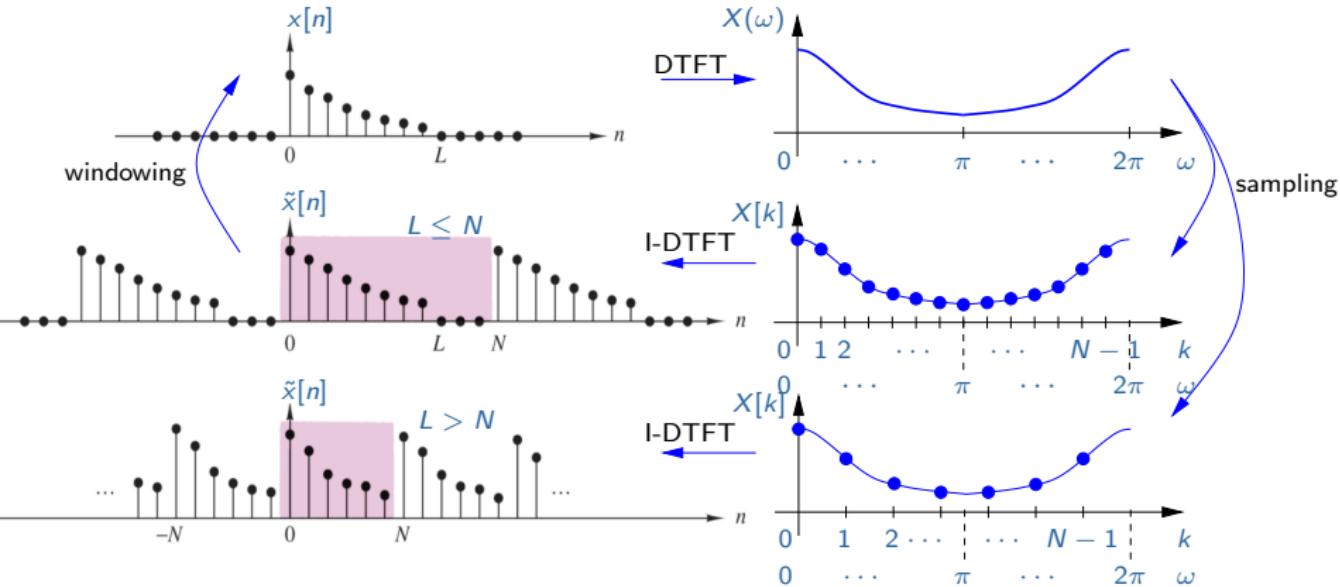
This is the usual definition of the DFT, but it is valid only under the assumption! The IDFT actually gives $\tilde{x}[n]$, a periodic sequence. Under the assumption, one period is equal to $x[n]$.

Since we recovered $x[n]$, we could reconstruct $X(\omega)$: the N samples $X[k]$ are sufficient to define $X(\omega)$.

DFT – Aliasing

If $L > N$, then the IDFT gives rise to temporal aliasing: the IDFT gives $\tilde{x}[n]$, but the central samples of $\tilde{x}[n]$ are not equal to $x[n]$.

In this case, the N samples $X[k]$ are **not** sufficient to reconstruct $X(\omega)$.



Reconstruction

Assume $N \geq L$: no aliasing. We can express the spectrum $X(\omega)$ in terms of the N samples $X[k] = X(\frac{2\pi}{N}k)$ using an interpolation formula:

$$\begin{aligned} X(\omega) &= \sum_{n=0}^{N-1} x[n] e^{-j\omega n} && \text{DTFT; now use } x[n] = \tilde{x}[n]; \text{ insert IDFT} \\ &= \sum_{n=0}^{N-1} \left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn} \right) e^{-j\omega n} \\ &= \sum_{k=0}^{N-1} X[k] \left(\frac{1}{N} \sum_{n=0}^{N-1} e^{-j(\omega - \frac{2\pi}{N}k)n} \right) \end{aligned}$$

Reconstruction

Since

$$\sum_{n=0}^{N-1} e^{-j\omega n} = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = \frac{\sin(\frac{1}{2}\omega N)}{\sin(\frac{1}{2}\omega)} e^{-j\omega \frac{N-1}{2}} =: G(\omega)$$

we conclude that

$$X(\omega) = \frac{1}{N} \sum_{k=0}^{N-1} X[k] G\left(\omega - \frac{2\pi}{N} k\right)$$

$G(\omega)$ is the Dirichlet kernel, a “periodic sinc” function.

Reconstruction

Alternative derivation:

The original sequence $x[n]$ is obtained via windowing in time:

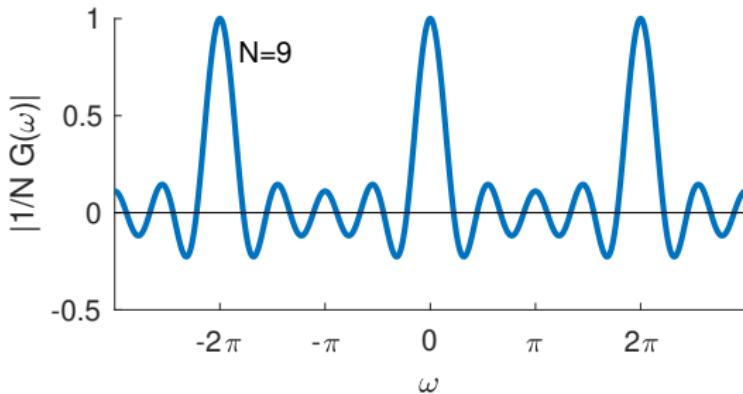
$$x[n] = \tilde{x}[n] g[n], \quad \text{where} \quad g[n] = u[n] - u[n - N]$$

$g[n]$ is a pulse of length N which selects $\tilde{x}[n]$.

- The DTFT of $g[n]$ is $G(\omega)$ (Dirichlet) as defined before.
- A product in time gives convolution in frequency:

$$\begin{aligned} X(\omega) &= \frac{1}{2\pi} \tilde{X}(\omega) * G(\omega) \\ &= \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{2\pi}{N} \sum_k X[k] \delta(\theta - \frac{2\pi}{N} k) \right) G(\omega - \theta) d\theta \\ &= \frac{1}{N} \sum_{k=0}^{N-1} X[k] G\left(\omega - \frac{2\pi}{N} k\right) \end{aligned}$$

Reconstruction



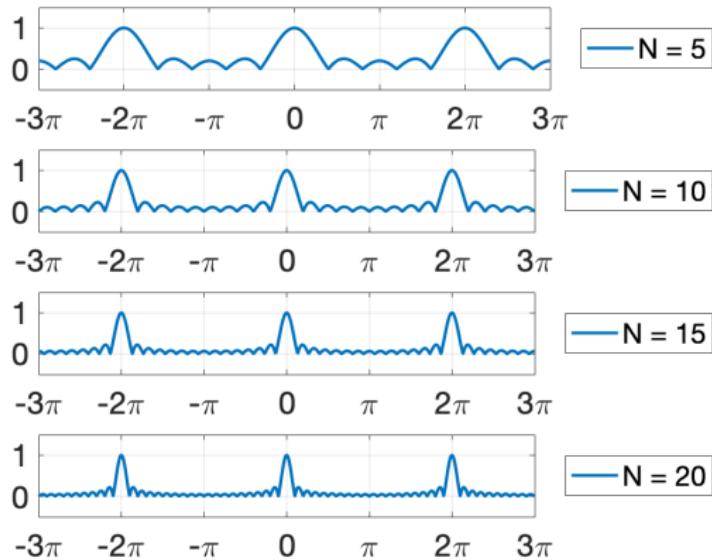
Clearly, $\frac{1}{N} G(\omega)$ is an interpolation function since

$$\frac{1}{N} G\left(\frac{2\pi}{N} k\right) = \begin{cases} 1, & k = 0 \\ 0, & k = 1, \dots, N - 1 \end{cases}$$

so that the interpolation formula gives $X\left(\frac{2\pi}{N} k\right) = X[k]$.

Reconstruction

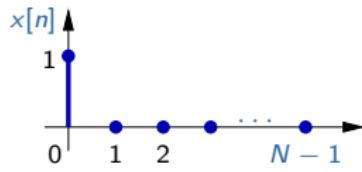
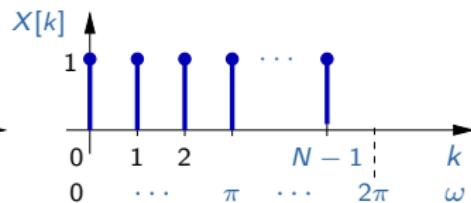
Plots of $|G(\omega)|$ for various N :



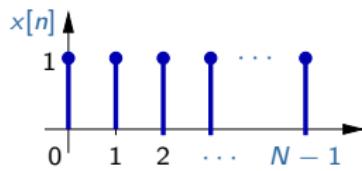
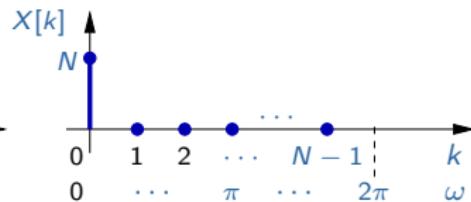
- The main lobe width is about $\frac{2\pi}{N}$. This determines the resolution in many applications.

DFT of basic signals

- Impulse: $\delta[n] \Leftrightarrow 1$



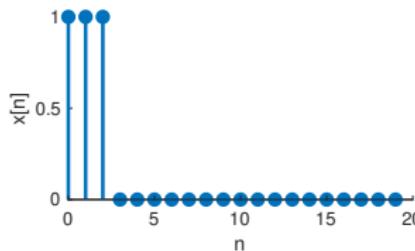
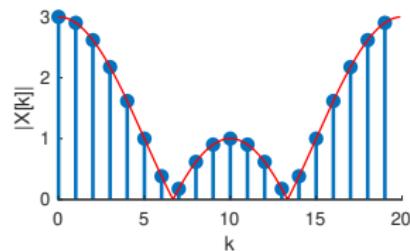
- Constant: $1 \Leftrightarrow N\delta[k]$



DFT of basic signals

- Pulse (length L): $g[n] \Leftrightarrow G[k]$

$$g[n] = u[n] - u[n - L], \quad G[k] = L \frac{\sin(\frac{\pi}{N} L k)}{\sin(\frac{\pi}{N} k)} e^{-j \frac{\pi}{N} (L-1)}$$



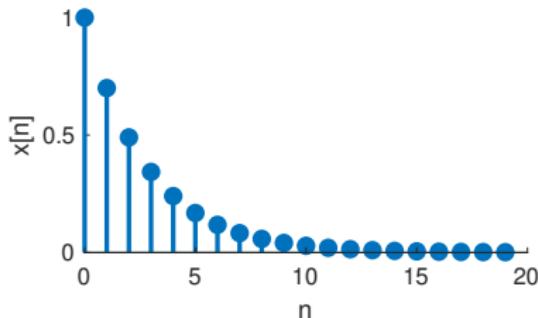
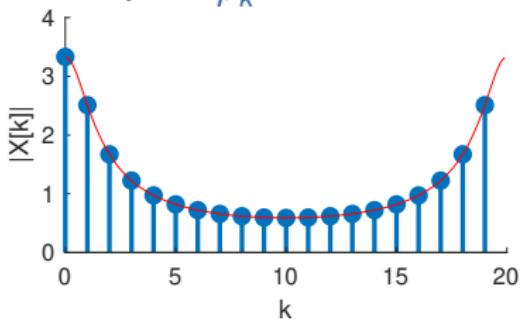
(Note error in book wrt phase sign)

DFT of basic signals

- (Clipped) exponential sequence:

$$x[n] = a^n, \quad n = 0, \dots, N-1 \Rightarrow X[k] = \sum_{n=0}^{N-1} a^n e^{-j \frac{2\pi}{N} kn}$$
$$= \sum_{n=0}^{N-1} \rho_k^n \quad \text{with } \rho_k = a e^{-j \frac{2\pi}{N} k}$$
$$= \begin{cases} N & \text{if } \rho_k = 1 \\ \frac{1 - \rho_k^N}{1 - \rho_k} & \text{otherwise} \end{cases}$$

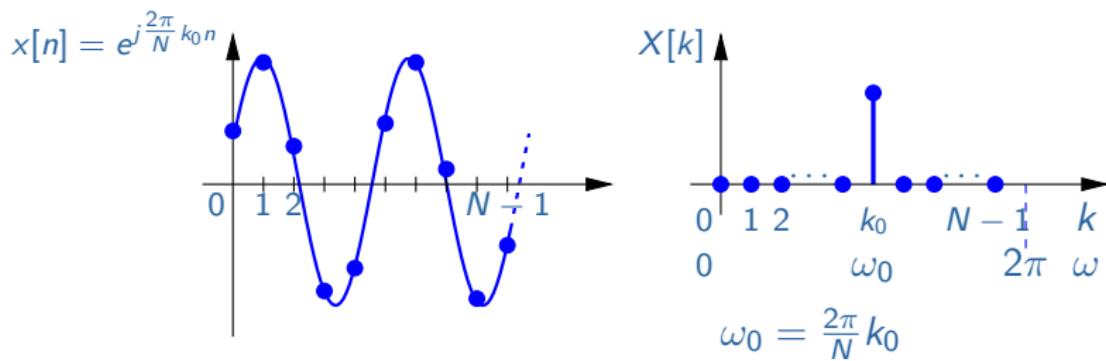
$(\rho_k^N \text{ is due to clipping})$



DFT of basic signals

- Complex exponential (exactly periodic: frequency multiple of $\frac{2\pi}{N}$)

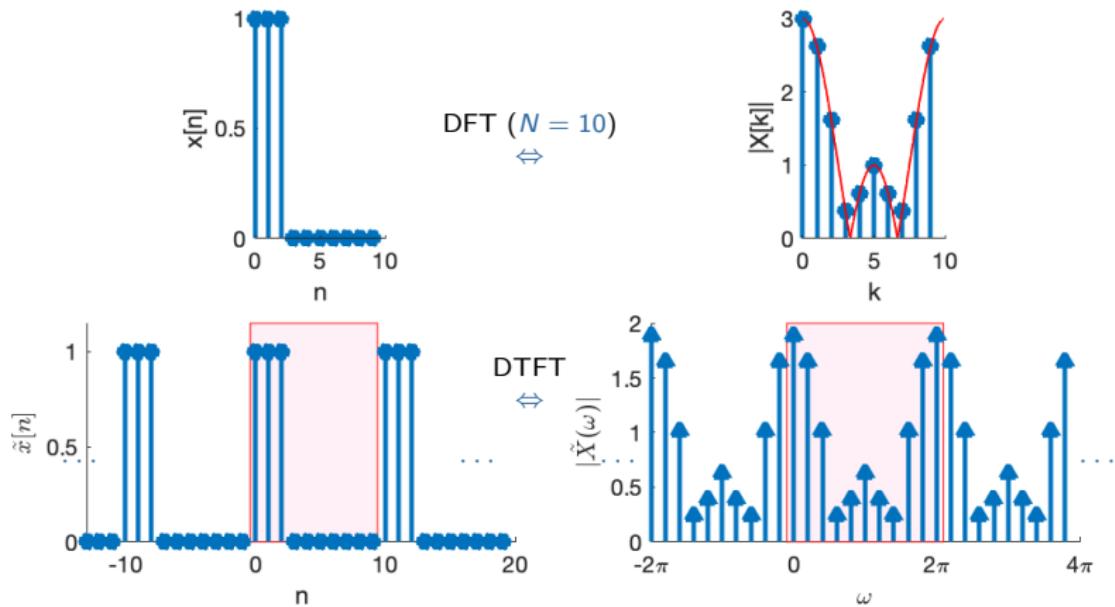
$$e^{j\frac{2\pi}{N}k_0 n} \Leftrightarrow N \delta[k - k_0 \bmod N], \quad k = 0, \dots, N-1$$



Properties

Let $x[n], n = 0, \dots, N-1 \Leftrightarrow X[k], k = 0, \dots, N-1$.

Underwater, the periodicity in time and frequency plays a role.



Circular time shift

Consider a delay (phase shift) of n_0 samples in frequency domain. On the extended sequence $\tilde{x}[n]$, we have

$$\text{DTFT: } \tilde{x}[n - n_0] \Leftrightarrow \tilde{X}(\omega)e^{-j\omega n_0}$$

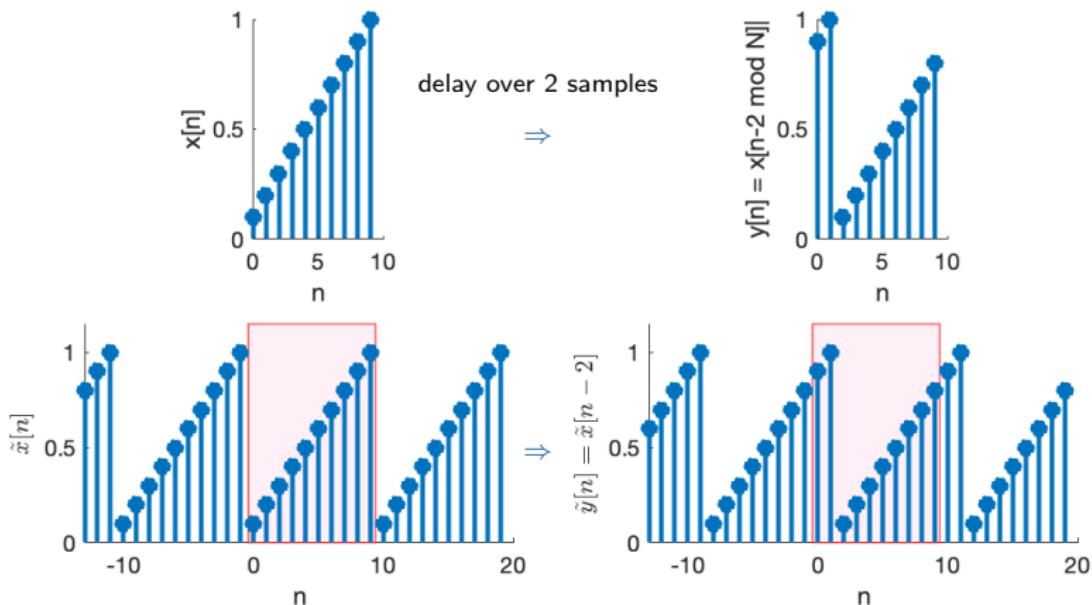
- Windowing $\tilde{x}[n - n_0]$ to the interval $0, \dots, N - 1$ gives

$$\text{DFT: } x[n - n_0 \bmod N] \Leftrightarrow X[k]e^{-j\frac{2\pi}{N}kn_0}$$

In time, this is seen as a *circular* time shift.

Circular time shift

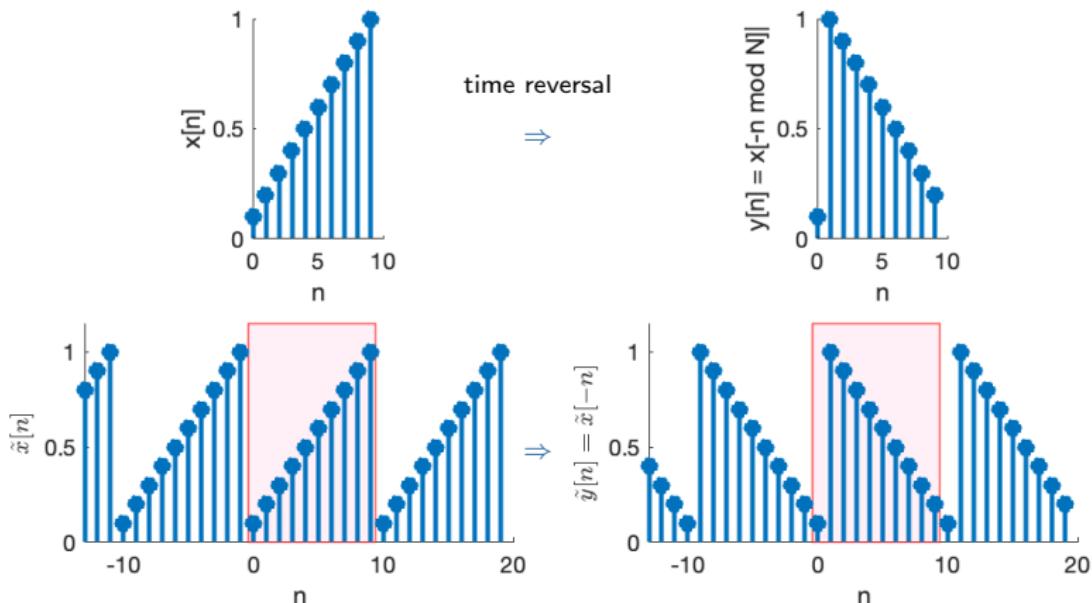
$x[n - n_0 \bmod N]$ corresponds to a circular time shift over n_0 samples



Circular time reversal

For a real sequence:

$$x[-n \bmod N] = \begin{cases} x[0] & n = 0 \\ x[N - n] & n = 1, \dots, N - 1 \end{cases} \Leftrightarrow X^*[k]$$



Complex conjugation

From the DTFT: $\tilde{x}^*[n] \Leftrightarrow \tilde{X}^*(-\omega)$, we find

$$x^*[n] \Leftrightarrow X^*[-k \bmod N]$$

- Mapping $-k \bmod N$ to the interval $0, \dots, N$ gives

$$\text{DFT: } x^*[n] \Leftrightarrow X^*[N - k]$$

Hence, if $x[n]$ is real, then $X[k] = X^*[N - k]$, and

$$|X[k]| = |X^*[N - k]| \quad \text{magnitude spectrum is even}$$

$$\angle X[k] = -\angle X^*[N - k] \quad \text{phase spectrum is odd}$$

$X[0]$ is real;

$X[N/2]$ is real for even N

Circular convolution

For the DTFT, a (linear) convolution maps to a product in frequency

For the DFT, such a result holds for $\tilde{x}[n]$ and $\tilde{y}[n]$. This gives rise to a **cyclic convolution**:

$$x[n] \circledast y[n] := \sum_{m=0}^{N-1} x[m]y[n - m \bmod N] \Leftrightarrow X[k] Y[k]$$

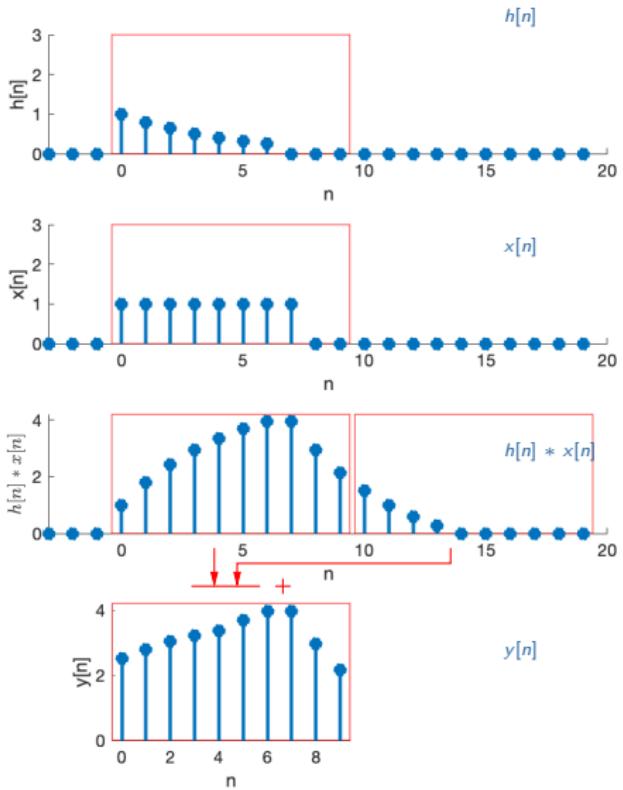
Circular convolution

Compute a linear convolution $h[n] * x[n]$, then make periodic and window to 1 period.

⇒

Becomes linear convolution **if**

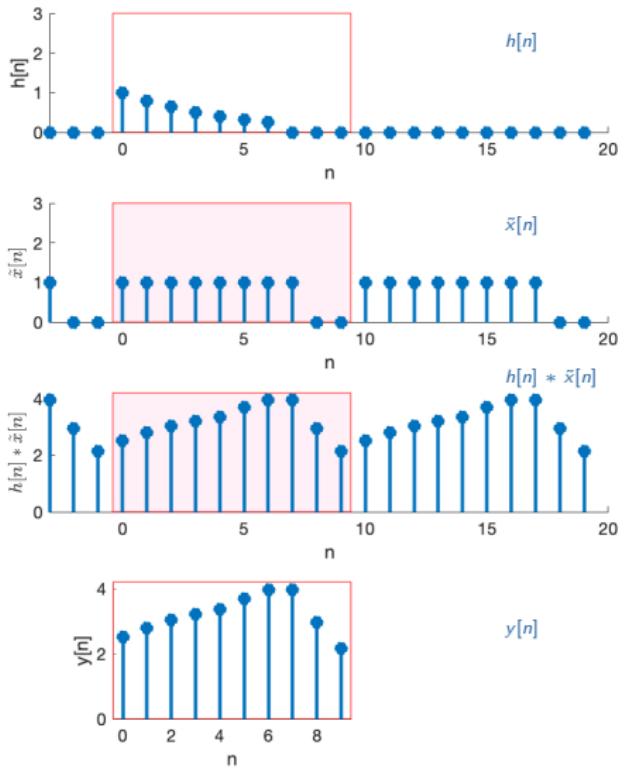
$$N \geq N_x + N_h - 1$$



Circular convolution

Alternative construction

Compute a linear convolution $h[n] * \tilde{x}[n]$ with periodic input, then window.



Circular convolution

$$x[n] \circledast y[n] \Leftrightarrow X[k] Y[k]$$

Proof: computing the IDFT of $X[k]Y[k]$ gives

$$\begin{aligned} & \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{m=0}^{N-1} x[m] e^{-j \frac{2\pi}{N} km} \right) \left(\sum_{\ell=0}^{N-1} y[\ell] e^{-j \frac{2\pi}{N} k\ell} \right) e^{j \frac{2\pi}{N} kn} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} x[m] \sum_{\ell=0}^{N-1} y[\ell] \underbrace{\sum_{k=0}^{N-1} e^{j \frac{2\pi}{N} k(n-\ell-m)}}_{\begin{cases} N, & n-\ell-m \equiv 0 \pmod{N} \\ 0, & \text{otherwise} \end{cases}} \\ &= \sum_{m=0}^{N-1} x[m] y[n-m \pmod{N}] \end{aligned}$$

Linear convolution implemented by cyclic convolution

- Circular convolution $y[n] = x[n] \circledast h[n]$ is equal to linear convolution $y[n] = x[n] * h[n]$ if $N \geq N_x + N_h - 1$.
- Implication: if the condition holds, we can implement linear convolution efficiently in frequency domain using $Y[k] = X[k] H[k]$.
 - Zero pad $x[n]$ and $h[n]$ to length $N = N_x + N_h - 1$
 - Compute the DFTs $X[k]$ and $H[k]$, $k = 0, \dots, N - 1$
 - Compute $Y[k] = X[k] H[k]$, $k = 0, \dots, N - 1$
 - Compute the IDFT to obtain $y[n]$, $n = 0, \dots, N - 1$.
- The DFTs are efficiently computed using the FFT [future lecture], with complexity $O(N \log_2 N)$.

This has enabled the digital revolution with many applications that otherwise would not exist (jpg, mp3, wifi, radar, MRI, ...)

Multiplication

Multiplication in time \Leftrightarrow circular convolution

$$x[n]y[n] \Leftrightarrow \frac{1}{N}X[k] \circledast Y[k]$$

Proof: dual of the proof for $x[n] \circledast y[n]$ (slide 31)

$$\begin{aligned} \mathcal{F}\{x[n]y[n]\} &= \sum_{n=0}^{N-1} \left(\frac{1}{N} \sum_{m=0}^{N-1} X[m] e^{j \frac{2\pi}{N} mn} \right) \left(\frac{1}{N} \sum_{\ell=0}^{N-1} Y[\ell] e^{j \frac{2\pi}{N} \ell n} \right) e^{-j \frac{2\pi}{N} kn} \\ &= \frac{1}{N^2} \sum_{m=0}^{N-1} X[m] \sum_{\ell=0}^{N-1} Y[\ell] \underbrace{\sum_{n=0}^{N-1} e^{-j \frac{2\pi}{N} (k-\ell-m)n}}_{\begin{cases} N, & k - \ell - m = 0 \pmod{N} \\ 0, & \text{otherwise} \end{cases}} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[k - m \pmod{N}] \end{aligned}$$

Circular frequency shift

Modulation is a special case of multiplication:

$$x[n] e^{j \frac{2\pi}{N} k_0 n} \Leftrightarrow X[k - k_0 \bmod N]$$

Proof: Previously, we saw

$$y[n] = e^{j \frac{2\pi}{N} k_0 n} \Leftrightarrow Y[k] = \delta[k - k_0 \bmod N]$$

Insert in the “multiplication” result: the DFT of $x[n]y[n]$ is

$$\begin{aligned} \frac{1}{N} X[k] \circledast Y[k] &= \frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[k - m \bmod N] \\ &= \frac{1}{N} \sum_{m=0}^{N-1} X[m] N\delta[k - k_0 - m \bmod N] = X[k - k_0 \bmod N] \end{aligned}$$

Energy (Parseval)

$$E_x = \sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

Proof:

$$\begin{aligned} \sum_{n=0}^{N-1} |x[n]|^2 &= \sum_{n=0}^{N-1} x[n]x^*[n] = \sum_{n=0}^{N-1} x[n] \left(\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2\pi}{N} kn} \right)^* \\ &= \frac{1}{N} \sum_{k=0}^{N-1} X^*[k] \left(\sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} kn} \right) \\ &= \frac{1}{N} \sum_{k=0}^{N-1} X^*[k]X[k] = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2 \end{aligned}$$

Summary

Table 10.1 on p.690:

Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
Complex conjugate	$x^*[n]$	$X^*[N - k \bmod N]$
Time shift	$x[n - n_0 \bmod N]$	$X[k]e^{-j\frac{2\pi}{N}kn_0}$
Time reverse	$x^*[-n \bmod N]$	$X^*[k]$
Frequency shift	$x[n]e^{j\frac{2\pi}{N}k_0 n}$	$X[k - k_0 \bmod N]$
Circ. convolution	$x[n] \circledast y[n]$ $= \sum_{m=0}^{N-1} x[m]y[n - m \bmod N]$	$X[k] Y[k]$
Multiplication	$x[n] y[n]$	$\frac{1}{N} X[k] \circledast Y[k]$ $= \frac{1}{N} \sum_{\ell=0}^{N-1} X[\ell] Y[k - \ell \bmod N]$
Parseval	$\sum_{n=0}^{N-1} x[n] ^2$	$\frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$
Symmetry	$x[n]$ real	$X[k] = X[N - k \bmod N]$ $ X[k] = X[N - k \bmod N] $ $\angle(X[k]) = -\angle(X[N - k \bmod N])$

To do:

- Study chapter 10
- Try to make exercise ...

Next lecture, we consider the construction of spectra (chapter 14). We revisit the DFT later, when we look at the FFT (chapter 11).