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Sampling, revisited

= Suppose we have sampled a signal x(t) at a certain rate F, but later
would have liked another rate. How can we “resample” x|[n]?

m In other cases, we may have deliberately oversampled a signal, to
simplify analog hardware implementations. How does that work?
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Outline

m Sample rate conversion

® Downsampling by factor D
® Upsampling by a factor U
® Sample rate conversion by a rational factor U/D

m Implementation

® Multistage sample rate conversion
® Polyphase filters (future lecture)

Prior knowledge

» Sampling
= DTFT

The slides cover Ch. 6.5 and part of 13.5 of the Holton book.
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Downsampling by a factor D

Suppose we sampled an analog signal x(t) at a rate F = 1/ T, but
want to reduce the rate by a factor of D. The new rateis F, = 1/T..

T.=DTs = y[n]=x(nT.) =x(nDTs) = x[nD]

Thus, we simply drop samples of x[n] and keep only every D-th sample.

x[n] —= | D {—— y[n] = x[nD]

Note: be aware that the notation x[n] and y[n] doesn’t show that the
two signals have a different rate!
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Decimation by a factor D

Downsampling (decimation) is a linear time-varying operation:

x[n] ) y[n] 1

H—(T)—I—l—gjl—o—l—o—— [ *—’_l—l—li%'
£[n] = x[n — 1] ; yln] # yln — 1]

R B

m A delay on the input doesn't lead to a delay on the output.

Therefore, the analysis is a bit more involved (convolution property of
LTI systems doesn't hold; the order of blocks can’t be reversed)
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Downsampling by a factor D
How does the spectrum Y(w) of the downsampled signal relate to the
original spectrum X(w)?

m Define a sampling function s[n] as a delta train:

> 1, n=0,+D,4+2D,---
s[n] = Sn— kD1 =<"" ’ ’ ’
] k:Zoo [ ] {O, otherwise

m We can write s[n] as a sum of D exponentials (as before on sampling):
1 D—-1
= j2mkn/D
st =5 >_ ¢
k=0
m The spectrum (DTFT) of s[n| is another delta train:

D—-1 D—-1
S(W):%Z]—“{eﬂ”k”/D}:%Zé(w—%rk/D) —T<w<T
k=0 k=0
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Downsampling by a factor D
To derive the spectrum Y (w), we split the downsampling into 2 steps:

m Set samples to zero using the sample function: x.[n] = x[n]s[n]; this
leads to loss of information

m Drop the zero samples to obtain y[n] (now without loss of

information)
x[n]
el L
01 3 4
Xe[n]
2
01 3 4
y[n]
1 3 ...
0 2
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Downsampling by a factor D

We first look at x.[n] = x[n]s[n], which replaces samples of x[n] by zero.

m We use the fact that a product in time domain relates to a
convolution in frequency domain:

m This is a sum of shifted copies of X(w). The shifts are multiples of
27/D. This can lead to aliasing!
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Downsampling by a factor D

Next, to obtain y[n] we drop the zero samples (without further loss of
information):

o0 o0

y[n] = xe[nD] = Y(w) = Z y[n]e—jwn _ Z Xe[nD]e_f“’”
= Z xe[n]e #"/P = X.(w/D)

m Thus: compressing x.[n] by dropping the zero samples leads to an
expansion of the spectrum.

m Overall,

=53 x(45)
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Downsampling by a factor D

The spectrum of the decimated signal Y(w) consists of shifted and
stretched copies of the original spectrum X(w).

1

X AL A

27 —-x 0 = 2« w
Y (w)] 1/2
M=2 ‘ ‘

—2r -7 0 7w 27 @ w
Y (w)| 1
M=3 = ;,(ﬁf S

—2r —m 0 7w 2«7 w

m No aliasing if X(w) = 0 for §j <w < 7 = the signal should satisfy
Nyquist at the new (lower) rate.
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Downsampling by a factor D

How to avoid aliasing? Use a lowpass filter! (called decimation filter)

1]

D |—— yln] = x[nD]

x[n}—— Hp(w)

X (@)

—2% -7 0 7 2;7 w

O A~ AN

T 27 —mw, 0 21w

—éw - 0 = 2% w

The lowpass filter has a cut-off at 5.
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Example: mobile phone speech signal

Consider a speech signal x(t). For telephony, only frequencies up to 3.5
kHz are important, so F; = 8 kHz should be sufficient.

Before sampling, we should apply an anti-aliasing filter H,,(2) with a
transition band between 3.5 and 4 kHz. This is very sharp, and gives an
analog filter of high complexity!

analog
lowpass (3.5-4kHz)
X(t
x(t)— Hu(@) Y AD e yln]
rate 8 kHz
Hao(F T LYl
1 :l ( ) )| 8 kHZ 1 T v !
] 4 4 8 12 F
3.5 s 2w w
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Example: audio signal

Alternative: sample at 16 kHz, and then downsample by a factor 2. The
analog filter now has a reasonable transition band, the complexity has
shifted to the digital domain.

analog digital
lowpass (4-8kHz) lowpass (3.5-4kHz)
X(t ya1n
(O —= Ho@) B a2 ) el s yaln]
T rate 16 kHz 1 rate 8 kHz
|Hisa(F)| 10 kHz Y]
1 N : /
4 8 4 8 12 16 F (kHz)
w
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Upsampling with a factor U

Upsampling by a factor U means to insert U — 1 zeros:

x[k], n=kU sl g xe[n]
x.[n] = 3 ... 2 .
el {0, otherwise H_])_]_l_]—~ - H_OLITE_I_'T"

x[n] — 4 U [— xe[n] = x[n/U]

rate = 1/T; rate = U/ T,

Then, derive as before that
Xe(w) = X(wU)

m The sampling rate of the signal increases by a factor U. There is no
information loss!
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Upsampling by a factor U

Xe(w) = X(wU)

11
1X(w)|
21 -7 0 1 21 w
after upsampling: \v ﬁ
[Xe(w)] Tx
U=3 IN N
—2r —m 0 @w 2« w
after image-reject filtering:
Y (w)] = [ Xe(w)Hi(w)] u
v=s /NN TN

—éﬂ —7m 0 T 2'7r w

(Explanations on the next slide)
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Upsampling by a factor U

Xe[n

x[Al—= tU Hi(w) = ylnl

rate 1/ T, i rate L/ T,

m The spectrum of the signal contracts by a factor U, and U — 1 extra
copies occur in the fundamental interval.

m We can remove the copies using a digital low-pass filter:

Hi () U 0< |w <7/U
U.) fr—
! 0, otherwise

This is called an interpolation (or image-reject) filter. In time domain,
it “interpolates” the samples that were zero.

m The overall system is equivalent to a system sampled at a rate of
U/ Ts provided there is no aliasing at the initial rate 1/ T

3. downsampling and upsampling
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Example: speech signal

Let's assume that our speech signal has to be converted back to analog
and the highest frequency is 3 kHz, sample rate 8 kHz. After D/A
conversion we need an image rejection (interpolation) filter with
transition band between 3-5 kHz.

analog
lowpass (3kHz)
x(t)
x[n—-= D/A =~ m(t) — (1)
8 kHz
A X (F)| X |Hi(F)| A [Y(F)
4 8 12 F 35 4 s
s 2w w
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Example: speech signal
Alternative: first upsample with a factor of 2, and then do the D/A

digital analog
lowpass (3-5kHz) lowpass (3-13kHz)
yi[n] y2[n] y2(t)
x[n] 12 hai[n] D/A h(t) F— (1)
rate 8 kHz | rate 16 kHz : T
16 kHz
IX(F)I LY2(F)|
| 1| | | :
4 3 12 F 4 3 12 16 F
s 21w w T 2w
|Y1(F)| 11 |Hi(F)| A Y(F)
4 8 12 16 F 3 13 4 8
s 2T w

Now the analog lowpass filter has a more reasonable transition band.
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Similar exercise

A CD stores audio samples with a sampling rate of 44.1 kHz. The
highest audible frequency by the human ear is around 20 kHz.

m On the CD player, the text “2 times oversampling” is written. What
does it mean?

m Draw the block scheme of the reconstruction, including the frequency
diagram of all signals.
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Similar exercise (cont'd)

This is about D/A conversion. The oversampling refers to inserting
zeros between the available samples, which will increase its rate. The
digital interpolation filter (lowpass filter) will interpolate the added

zeros. After D/A conversion, the analog filter will be simpler.

digital analog
lowpass (20-22kHz) lowpass (20-66kHz)
n n t
x[n] b, a2 om P29 e —
(CD)
rate 44 kHz irate 88 kHz T
88 kHz
[X(F)I [Ya(F)|
LV 1\ [
2022 44 66 F 2622 44 66 88 F
™ 27 w T 2r  w
[Yi(F)| ) |H,(F)| TW(F)'
022y 44 66 88 F 20 66 | /22 44
™ 27w 20
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Resampling by a rational factor U/D

We can combine upsampling with U and downsampling with D to
implement a sample rate conversion with any rational factor U/D.

x[nl—={ tU xeln] Hi(w) Hp(w) 1D —=x[n]

rate 1/ T 1 rate U/ T, | rate DLTS

can be combined

m The two low-pass filters can be combined into a single one with a

cut-off of we = min(f, ).
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Resampling by a rational factor U/D

Can we swap the ordering of upsampling and downsampling?

x[n] —

TU

ur[n]

—» | D

x[n] —

1D

uz[n]

— yl[n]

— 1 U
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Resampling by a rational factor U/D

Can we swap the ordering of upsampling and downsampling?

x[n] —

TU

ur[n]
——

1D

— yl[n]

x[n] —

1D

up[n]
——

TU

— )/2[’7]

m No! If U= D then yg[n] # y1[n].

m In fact, yo[n] = y1[n] if and only if U and D are relative primes.
(Show this by working out an example, e.g. U =2, D = 3)

5
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Resampling by a rational factor U/D

Example

Given is a discrete-time audio signal x[n| in CD quality: the sample rate
is 44 kHz. To transmit this over a telephone link, we must reduce the
sample rate to 8 kHz.

ya[n] y2[n]
x[n] —=4 U—=H(z)—L D— y[n]

rate 44 kHz rate 8 kHz

m What are suitable values for the upsampling factor U and
downsampling factor D?
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Resampling by a rational factor U/D

Example

Given is a discrete-time audio signal x[n| in CD quality: the sample rate
is 44 kHz. To transmit this over a telephone link, we must reduce the
sample rate to 8 kHz.

ya[n] y2[n]
x[n] —=4 U—=H(z)—L D— y[n]

rate 44 kHz rate 8 kHz

m What are suitable values for the upsampling factor U and
downsampling factor D?
U=2, D =11, so that 445 = 8.
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Resampling by a rational factor U/D

Example (cont’d)

m What is a specification for the filter H(z)?
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Resampling by a rational factor U/D

Example (cont’d)

m What is a specification for the filter H(z)?

IX] [Y2]
\/ _\ ““b" ‘ ! \

0 22 44 F 0 4 2 4 88 F

0 ™ 2m w 0 n/11mw/2 7 2m w
[Y1| Y

v Vo il
0 22 44 88 F 048 F
0 T/2 w 27w 0 72w w

m H(z) is a lowpass filter that should cut off above 4 kHz

(corresponding to w, = ﬁ)

3. downsampling and upsampling
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Multistage resampling

If U or D are too large, it is more efficient to implement conversion in
multiple stages. This leads to lower order filters.

x[n] ——=  Hp(w) LD y[n]
rate Fy rate f, = %
X1|n
X[n]——= Hp1(w) I D 1] Hpa(w) 1D, |—vln]
rate Fy rate F; = % rate F, = Dll:XDz

For example: factorize D = D1 - D>
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Multistage resampling

Example

Given an audio signal sampled at F, = 8 kHz. We want to keep the
frequencies 0 — 80 Hz and resample to f, = 160 Hz. Hence, the
decimation factor is D = 50.

Let us assume the following filter specifications:

m passband: 0-75 Hz, ripple §; = 1072

[X(w)] 30
® transition band: 75-80 Hz |Hp(w) L
m stopband: 80-4000 Hz, ripple 6, = 10~* _\ H_\
0 4000 8000 F
0 ™ 21 w
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Example (continued)

Heuristic formula to estimate filter order (Kaiser):

—10 |og(5152) —13 Sf — M

N= 14,661 ,  where [
m Here: 6f = L = i so that NN = 5151: very high
%77 3000 ~ 1600 T omoh very hig
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Example (continued)

Instead, we now implement the filtering and downsampling in two
stages, D1 = 25 and D, = 2.

Stage 1: The filter specs of the first decimation filter Hpq(z) are:

m passband: 0-75 Hz (unchanged)

m transition band: 75-240 Hz IX (@)l
(because 320 — 80 = 240, see next slide) Ho ()l

m ripples 61 =0.5-1072 and 6, = 10~* i\ /—|_\

0 75240 4000 8000 F
0 iy 27 w

(half for 61 because we'll have 2 stages)

= new sample rate: F; = F,/D; = 320 Hz

Here, 6f = % = % , therefore I\71 = 167, which is much smaller than
before.
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Example (continued)

Stage 2:

m passband: 0-75 Hz X1 (@)l
|Hp2(w)

m transition band: 75-80 Hz ‘K\ /,]"\

m ripples §; = 0.5- 1072 and ! }
Jr =107* 0 80 160 240 320
0 T 27

e my

Here, N, = 220, therefore, the total number of filter coefficients

167 + 220 = 387 is much smaller than the 5151 using the single stage
implementation.

Another advantage is a reduction in data rates to run these filters,
which will be discussed later in Ch. 13.
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To do:

m Study Chapter 6.5 and 13.5
m Try to make exercise ...

m Check old exams for related exercises
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