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Sampling, revisited

Suppose we have sampled a signal x(t) at a certain rate Fs , but later
would have liked another rate. How can we “resample” x [n]?

In other cases, we may have deliberately oversampled a signal, to
simplify analog hardware implementations. How does that work?
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Outline

Sample rate conversion

• Downsampling by factor D
• Upsampling by a factor U
• Sample rate conversion by a rational factor U/D

Implementation

• Multistage sample rate conversion
• Polyphase filters (future lecture)

Prior knowledge

Sampling

DTFT

The slides cover Ch. 6.5 and part of 13.5 of the Holton book.
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Downsampling by a factor D

Suppose we sampled an analog signal x(t) at a rate Fs = 1/Ts , but
want to reduce the rate by a factor of D. The new rate is F ′s = 1/T ′s .

T ′s = DTs ⇒ y [n] = x(nT ′s) = x(nDTs) = x [nD]

Thus, we simply drop samples of x [n] and keep only every D-th sample.

y [n] = x [nD]x [n] ↓ D

Note: be aware that the notation x [n] and y [n] doesn’t show that the
two signals have a different rate!
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Decimation by a factor D

Downsampling (decimation) is a linear time-varying operation:

· · ·
0 32

0 1 2 4

· · ·

· · ·

· · ·
0 1 3 42

y [n]

ỹ [n] 6= y [n − 1]

x[n]

x̃[n] = x[n − 1]

1

0 1 3 4

2

3

A delay on the input doesn’t lead to a delay on the output.

Therefore, the analysis is a bit more involved (convolution property of
LTI systems doesn’t hold; the order of blocks can’t be reversed)
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Downsampling by a factor D
How does the spectrum Y (ω) of the downsampled signal relate to the
original spectrum X (ω)?

Define a sampling function s[n] as a delta train:

s[n] =
∞∑

k=−∞
δ[n − kD] =

{
1, n = 0,±D,±2D, · · ·
0, otherwise

We can write s[n] as a sum of D exponentials (as before on sampling):

s[n] =
1

D

D−1∑
k=0

e j2πkn/D

The spectrum (DTFT) of s[n] is another delta train:

S(ω) =
1

D

D−1∑
k=0

F
{
e j2πkn/D

}
=

2π

D

D−1∑
k=0

δ(ω−2πk/D) −π ≤ ω ≤ π
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Downsampling by a factor D
To derive the spectrum Y (ω), we split the downsampling into 2 steps:

Set samples to zero using the sample function: xe [n] = x [n]s[n]; this
leads to loss of information

Drop the zero samples to obtain y [n] (now without loss of
information)

· · ·

xe [n]

0 1 3 4

2 · · ·

y [n]
1

0 2

3 · · ·

x [n]

0 1 3 4

2
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Downsampling by a factor D

We first look at xe [n] = x [n]s[n], which replaces samples of x [n] by zero.

We use the fact that a product in time domain relates to a
convolution in frequency domain:

Xe(ω) =
1

2π
X (ω) ∗ S(ω)

=
1

2π

2π

D

D−1∑
k=0

X (ω) ∗ δ(ω − 2πk/D)

=
1

D

D−1∑
k=0

X (ω − 2πk/D)

This is a sum of shifted copies of X (ω). The shifts are multiples of
2π/D. This can lead to aliasing!
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Downsampling by a factor D
Next, to obtain y [n] we drop the zero samples (without further loss of
information):

y [n] = xe [nD] ⇔ Y (ω) =
∞∑

n=−∞
y [n]e−jωn =

∞∑
n=−∞

xe [nD]e−jωn

=
∞∑

n=−∞
xe [n]e−jωn/D = Xe(ω/D)

Thus: compressing xe [n] by dropping the zero samples leads to an
expansion of the spectrum.

Overall,

Y (ω) =
1

D

D−1∑
k=0

X

(
ω − 2πk

D

)
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Downsampling by a factor D
The spectrum of the decimated signal Y (ω) consists of shifted and
stretched copies of the original spectrum X (ω).

−2π 2π

0 π−π−2π 2π

0 π−π−2π 2π ω

ω

ω
M = 3

M = 2

1/3

1/2

1

|Y (ω)|

|Y (ω)|

0

|X (ω)|

π−π

No aliasing if X (ω) = 0 for π
D ≤ ω ≤ π ⇒ the signal should satisfy

Nyquist at the new (lower) rate.
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Downsampling by a factor D
How to avoid aliasing? Use a lowpass filter! (called decimation filter)

y [n] = x [nD]↓ Dx [n] HD(ω)
x̃ [n]

−2π 2π

0 π−π−2π 2π

|X (ω)|

|Y (ω)|

1

1/2

|X̃ (ω)| 1

0 π−π−2π 2π ω

ω

ω0
M = 2

π−π

The lowpass filter has a cut-off at π
D .
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Example: mobile phone speech signal

Consider a speech signal x(t). For telephony, only frequencies up to 3.5
kHz are important, so Fs = 8 kHz should be sufficient.

Before sampling, we should apply an anti-aliasing filter Haa(Ω) with a
transition band between 3.5 and 4 kHz. This is very sharp, and gives an
analog filter of high complexity!

1

4
3.5

x(t)

lowpass (3.5-4kHz)

Haa(Ω)
x̃(t)

|Haa(F )|
1

4 8 12

|Y |

A/D

8 kHz

π 2π ω
F

y [n]
rate 8 kHz

analog
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Example: audio signal
Alternative: sample at 16 kHz, and then downsample by a factor 2. The
analog filter now has a reasonable transition band, the complexity has
shifted to the digital domain.

4

x(t)

lowpass (4-8kHz)

Haa(Ω)
x̃(t)

A/D

16 kHz

lowpass (3.5-4kHz)

Hda(ω) ↓ 2 y3[n]
y2[n]y1[n]

rate 16 kHz rate 8 kHz

analog digital

|Y1|

ω
F (kHz)4 8 12

π
16
2π

ω

|Y2|

F (kHz)4 8 12
π

16
2π|Y3|

ω
F (kHz)4 8 12 16

π 2π

|Haa(F )|
1

8
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Upsampling with a factor U
Upsampling by a factor U means to insert U − 1 zeros:

xe [n] =

{
x [k], n = kU

0, otherwise

xe [n]

0 1 3 4

2 · · ·
x[n]

1

0 2

3 · · ·

xe [n] = x [n/U]↑ Ux [n]

rate = 1/Ts rate = U/Ts

Then, derive as before that

Xe(ω) = X (ωU)

The sampling rate of the signal increases by a factor U. There is no
information loss!
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Upsampling by a factor U

Xe(ω) = X (ωU)

0 π−π−2π 2π

0 π−π 2π−2π

|X (ω)| 1

|Y (ω)| = |Xe(ω)HI (ω)| U
U = 3

|Xe(ω)| 1
U = 3

ω

ω

ω

after image-reject filtering:
0

after upsampling:

π−π−2π 2π

(Explanations on the next slide)
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Upsampling by a factor U

x [n] ↑ U HI (ω) y [n]
xe [n]

rate 1/Ts rate L/Ts

The spectrum of the signal contracts by a factor U, and U − 1 extra
copies occur in the fundamental interval.

We can remove the copies using a digital low-pass filter:

HI (ω) =

{
U, 0 ≤ |ω| ≤ π/U
0, otherwise

This is called an interpolation (or image-reject) filter. In time domain,
it “interpolates” the samples that were zero.

The overall system is equivalent to a system sampled at a rate of
U/Ts provided there is no aliasing at the initial rate 1/Ts
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Example: speech signal

Let’s assume that our speech signal has to be converted back to analog
and the highest frequency is 3 kHz, sample rate 8 kHz. After D/A
conversion we need an image rejection (interpolation) filter with
transition band between 3–5 kHz.

x [n] hI (t)D/A
x(t)

8 kHz

lowpass (3kHz)

y(t)

ω

|HI (F )|
1

3 5

|Y (F )|

4 8

|X (F )|

4 8 12
π 2π

F

analog
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Example: speech signal
Alternative: first upsample with a factor of 2, and then do the D/A

ω

↑ 2x [n] hI (t)D/A

16 kHz

lowpass (3-13kHz)lowpass (3-5kHz)

rate 16 kHzrate 8 kHz

y2[n]y1[n]
y(t)

|X (F )|

4 8 12
π 2π

F

hdI [n]

|Y1(F )|

4 8 12
π

16
2π ω

F

y2(t)

analogdigital

|Y2(F )|

4 8 12
π

16
2π ω

F

|HI (F )|
1

3 13

|Y (F )|

4 8

Now the analog lowpass filter has a more reasonable transition band.
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Similar exercise

A CD stores audio samples with a sampling rate of 44.1 kHz. The
highest audible frequency by the human ear is around 20 kHz.

On the CD player, the text “2 times oversampling” is written. What
does it mean?

Draw the block scheme of the reconstruction, including the frequency
diagram of all signals.
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Similar exercise (cont’d)
This is about D/A conversion. The oversampling refers to inserting
zeros between the available samples, which will increase its rate. The
digital interpolation filter (lowpass filter) will interpolate the added
zeros. After D/A conversion, the analog filter will be simpler.

ω

↑ 2x[n] hI (t)D/A

88 kHz

lowpass (20-66kHz)lowpass (20-22kHz)

rate 88 kHzrate 44 kHz

y2[n]y1[n]
y(t)

|X (F )|

22 44 66
π 2π

F

hdI [n]

|Y1(F )|

22 44 66
π

88
2π ω

F

y2(t)

(CD)

20

20 24

digital analog

|Y2(F )|

22 44 66
π

88
2π ω

F
20

|HI (F )|
1

20

|Y (F )|

22 4466
20
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Resampling by a rational factor U/D

We can combine upsampling with U and downsampling with D to
implement a sample rate conversion with any rational factor U/D.

x [n] ↑ U HI (ω)
xe [n]

rate 1/Ts rate U/Ts

↓ DHD(ω)

rate U
DTs

x ′[n]

can be combined

The two low-pass filters can be combined into a single one with a
cut-off of ωc = min( πU ,

π
D ).
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Resampling by a rational factor U/D

Can we swap the ordering of upsampling and downsampling?

↓ Dx [n] ↑ U y2[n]

↑ Ux [n] ↓ D y1[n]
u1[n]

u2[n]

No! If U = D then y0[n] 6= y1[n].

In fact, y0[n] = y1[n] if and only if U and D are relative primes.
(Show this by working out an example, e.g. U = 2, D = 3)
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Resampling by a rational factor U/D

Can we swap the ordering of upsampling and downsampling?

↓ Dx [n] ↑ U y2[n]

↑ Ux [n] ↓ D y1[n]
u1[n]

u2[n]

No! If U = D then y0[n] 6= y1[n].

In fact, y0[n] = y1[n] if and only if U and D are relative primes.
(Show this by working out an example, e.g. U = 2, D = 3)
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Resampling by a rational factor U/D
Example

Given is a discrete-time audio signal x [n] in CD quality: the sample rate
is 44 kHz. To transmit this over a telephone link, we must reduce the
sample rate to 8 kHz.

↓ D↑ U H(z)x [n] y [n]

rate 8 kHzrate 44 kHz

y1[n] y2[n]

What are suitable values for the upsampling factor U and
downsampling factor D?

U = 2, D = 11, so that 44U
D = 8.
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Resampling by a rational factor U/D
Example

Given is a discrete-time audio signal x [n] in CD quality: the sample rate
is 44 kHz. To transmit this over a telephone link, we must reduce the
sample rate to 8 kHz.

↓ D↑ U H(z)x [n] y [n]

rate 8 kHzrate 44 kHz

y1[n] y2[n]

What are suitable values for the upsampling factor U and
downsampling factor D?

U = 2, D = 11, so that 44U
D = 8.
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Resampling by a rational factor U/D
Example (cont’d)

What is a specification for the filter H(z)?

F
ω

22
2π

|X |

0
π0

44

22
π

|Y1|

0
π/20

44 F
ω

88
2π

22
π

0
π/20

444
π/11

F
ω

|Y |

0
0

4 8
π2π

F
ω

88
2π

|Y2|

H(z) is a lowpass filter that should cut off above 4 kHz

(corresponding to ωc =
π

11
).
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Resampling by a rational factor U/D
Example (cont’d)

What is a specification for the filter H(z)?

F
ω

22
2π

|X |

0
π0

44

22
π

|Y1|

0
π/20

44 F
ω

88
2π

22
π

0
π/20

444
π/11

F
ω

|Y |

0
0

4 8
π2π

F
ω

88
2π

|Y2|

H(z) is a lowpass filter that should cut off above 4 kHz

(corresponding to ωc =
π

11
).
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Multistage resampling

If U or D are too large, it is more efficient to implement conversion in
multiple stages. This leads to lower order filters.

y [n]x[n]

rate Fx

↓ D2HD2(ω)

rate Fy = Fx
D1D2

y [n]↓ D1HD1(ω)x[n]

rate Fx

x1[n]

rate F1 = Fx
D1

↓ DHD(ω)

rate Fy = Fx
D

For example: factorize D = D1 · D2
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Multistage resampling
Example

Given an audio signal sampled at Fx = 8 kHz. We want to keep the
frequencies 0− 80 Hz and resample to Fy = 160 Hz. Hence, the
decimation factor is D = 50.

Let us assume the following filter specifications:

passband: 0–75 Hz, ripple δ1 = 10−2

transition band: 75–80 Hz

stopband: 80–4000 Hz, ripple δ2 = 10−4

0
0

0 75 80

F
ω

|HD(ω)|

4000
π

8000
2π

|X (ω)|
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Example (continued)

Heuristic formula to estimate filter order (Kaiser):

N̂ =
−10 log(δ1δ2)− 13

14.6 δf
, where δf =

Fstop − Fpass
Fx

Here: δf =
5

8000
=

1

1600
so that N̂ = 5151: very high
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Example (continued)

Instead, we now implement the filtering and downsampling in two
stages, D1 = 25 and D2 = 2.

Stage 1: The filter specs of the first decimation filter HD1(z) are:

passband: 0–75 Hz (unchanged)

transition band: 75–240 Hz

(because 320− 80 = 240, see next slide)

ripples δ1 = 0.5 · 10−2 and δ2 = 10−4

(half for δ1 because we’ll have 2 stages)

new sample rate: F1 = Fx/D1 = 320 Hz

|HD (ω)|

0
0

240 4000
π

8000
2π

F

ω
75

|X (ω)|

Here, δf = 165
8000 = 1

48 , therefore N̂1 = 167, which is much smaller than
before.
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Example (continued)

Stage 2:

passband: 0–75 Hz

transition band: 75–80 Hz

ripples δ1 = 0.5 · 10−2 and
δ2 = 10−4

0
0 80 160

π
240 320

2π

F

ω

|X1(ω)|
|HD2(ω)|

Here, N̂2 = 220, therefore, the total number of filter coefficients
167 + 220 = 387 is much smaller than the 5151 using the single stage
implementation.

Another advantage is a reduction in data rates to run these filters,
which will be discussed later in Ch. 13.
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To do:

Study Chapter 6.5 and 13.5

Try to make exercise ...

Check old exams for related exercises
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