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Sampling — revisited
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m Recap of ideal sampling and reconstruction
m Bandpass sampling

m Nonideal reconstruction

Prior knowledge: EE2S1 Signals & Systems

m Continuous-time Fourier transform

= Sampling and reconstruction (refreshed today)
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|deal sampling

analog-to-digital

Xa(t) ——

ADC

T

Ts

digital-to-analog

———— DAC

— vs(t)

T

Ts

In absence of a digital system (y[n] = x[n]), the goal for ideal
sampling/reconstruction is to have y,(t) equal to x,(t).

m We write x,(t) rather than x(t) so that we can better distinguish the
spectra of x,(t) and x[n| in the notation
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|deal sampling

Xa(t)—E—A/TSI» ADC —E—»x[n] ) x(t) x:(t) | impulse «[1]
I =x(nTs) % T sethlgnce = x,(nTs)

] | Ot 444t

Ts is the sampling period, Fs = % is the sampling frequency [Hz].

m We first model “ideal sampling”, where the sampled signal is
represented by a train of delta pulses xs(t)
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|deal sampling
Using
s(t) = Zc?(t —nTs) impulse train

we can write

xs(t) = xa(t)s(t) = > x(nTs)d(t — nTs) = > x[n]é(t — nT;)

n n

Xs(t) —

1 2 3 4 5 6 7 8 9 10 11

m x;(t) and x[n| have a 1-to-1 relation (same information content) —
we first analyze xs(t).
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|deal sampling
The Fourier transform of x.(t) is

X(Q) =F {Zx(nTs)é(t —~ nTs)} = xa(nTe)F{o(t — nTe)}

n n

_ Zxa(nTs)eijTsn _ Zx[n]e*jwn
n n
For a sequence x[n|, the Discrete-Time Fourier Transform (DTFT) is

therefore defined as '
X(w) = x[n]e Ie"

so that X(w) = Xs(2), where w = QT is the normalized angular
frequency.

m X(w) is periodic with period 27: it suffices to consider a single
period: —m < w < 7, the fundamental interval.
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Relation of X5(Q2) to X,(Q)

gl byt . T

2T, - T. 0 1. 2T, ¢t —Q,

O+———
:Q—»

= The Fourier transform of s(t) is also a series of delta pulses:

2 2
S(Q) = ?” Y60 k), Q= ?77 _orF,
S S

= The Fourier transform of x.(t) = x,(t) s(t) is then
Xs(Q) = —X(Q Zx (Q — k)

This is a sum of shifted spectra of X,(Q).
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Aliasing

The spectrum X;(Q) is periodic with period Q.

m The fundamental interval is —%Qs <Q< %Qs, which corresponds to
71 <w<m.

m The summation leads to aliasing.

1 X5(Q)] | -
—Q, 0 Q. Q
s |1
—Q, 0 Q 9
| Xs()] ‘ AN ‘ -
—Q.-1o, 0 1o, Q0 Q
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Nyquist condition

We do not want the copies X,({2 — k) to overlap each other.

The Nyquist condition says that no overlap occurs if x(t) is
bandlimited with maximal frequency Qax < %Qs; and in that case
x4(t) can be recovered from its samples x[n| (Shannon theorem).

m This minimal sampling frequency 2.« is the Nyquist frequency.

m Indeed, in that case we can recover x,(t) from x;(t) using an ideal
lowpass filter with passband Q. = %Qs.

xa(t) xs(t

)

sampling reconstruction

impulse XE”] sequence| % () [ ideal
to . to

sequence impulse LPF
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Nyquist condition satisfied

If Qmax < %Qs, then the shifted spectra don't overlap, and perfect
reconstruction is possible.

AN

_:dmai)inmi( : Q
s b
0. 0 = Q. Q
ECIVAN AN
—Q, 0 Q. Q
1X,(Q)] | /\ s
0. 0 q. Q
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Nyquist condition not satisfied

If Qpax > %Qs, then the shifted spectra overlap, and perfect
reconstruction is not possible (destructive aliasing)

_dmax Qr‘:1a>< Q
s {1
—Q, 0 Qs Q
1 Xs(2)] X X\
—Q, 0 Qs Q
X:(9) |
—Q, 0 Qs Q
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Ideal reconstruction

If the Nyquist condition is satisfied, we can recover x(t) from x,(t)
using an ideal lowpass filter (“brick-wall filter"):

X(Q) = X(DHAQ) = xi(t) = xs(t) * he(2)
= x[n]h(t — nTy)

T, Q] <39 sin(nt/Ts) . t
h = ———" > —sinc(mr—
{0 otherwise r(t) it/ Ts (m Ts)

m The filter is called an anti-imaging filter, interpolation filter, or
reconstruction filter. The reconstruction is a sum of scaled and
shifted sinc functions.

(Note: “sinc” has various definitions, with or without 7)
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Ideal reconstruction

h (0 reconstruction of sin(0.4 1)

T 3 35 4 45 5 55 6 65 7

1 m=20

Note that h,(mTs) = {O otherwice

= %(mTs) = Y x[n]h((m—n)T.)) = x[m]

n

Hence, the filter smoothly interpolates the x[m].
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Non-ideal sampling: Anti-aliasing filter

The anti-aliasing filter is an analog filter which we apply before the
ADC, to remove all frequencies above %Qs.

_ L a3,
Haa(S2) = { 0, elders

_2% 0 2
2 2

This prevents aliasing later during sampling. (The distortion of

frequencies above %Qs due to this filter is unavoidable.)

= A potential problem is that a sharp filter (small transition band) has
high complexity, while a not-so-sharp filter might still give aliasing.

m A sharp IIR filter might also give phase distortion at high frequencies.

Two solutions follow.
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Anti-aliasing filter
Approach 1

m Choose the desired cut-off frequency 2.

E.g., for audio, set Q. = 27 - 20 kHz, the Nyquist rate will be
Fs = 40 kHz

m Take a slightly higher sampling rate: Q. = (1 + r)2Q, with
0<r<1,eg., Q=27 44 kHz

= We can now use a non-ideal anti-aliasing filter H.,(<2), with a
transition band between Q. and %QS.

In fact, the stopband can be even a bit larger: Q, — Q..
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Anti-aliasing filter

Xs(92) ? Haa(9)
(11} / \ /’ ; : \</—\ oo
! ! \
—Qs -10,-Q 0 Qe Qs Qs Q
Qs — Qc

After sampling, we can digitally filter out the undesired components
between Q. and %Qs.

analog digital
lowpass lowpass
Xa(t)——= Haa(RQ) ADC Hea(w) —=x[n]

2. sampling
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Anti-aliasing filter

Approach 2 [details in next lecture]

m Use a cheap H,,(Q2) with a wide transition band

m Oversample x,(t) with a large factor M, e.g., Qs = 8Q, = 2MQ,

m After sampling, digitally remove the unwanted frequencies above Q,
and reduce the sample rate by M. [Covered in a future lecture.]
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Practical ADC

analog digital
lowpass ADC lowpass
Xa(t)——=1 Haa(Q) sample/+d/ Qe | Hea(w) X0l

T

Ts

The hold circuit is often based on a capacitance (buffer) to maintain
the voltage. The switch is often a MOSFET transistor.

The quantizer requires a voltage reference, a voltage divider, and a
series of comparators.
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Nonideal reconstruction

Ideal reconstruction with a sinc filter is not implementable:

m The delta impulses in ys(t) are not realizable

m The sinc filter is not causal

m The impulse response has infinite duration

Instead, we can use other filters such as a zero-order hold or a

first-order hold

D/A ROt
()

S _DQC h:?d AL YT E——r
Ts
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Zero-order hold

The zero-order hold circuit replaces the sequence of x[n] by a step-wise
changing analog signal:

)= 11 OSESTsyo(8) = ys(6) x ho(t)
olt) = 0, otherwise = S y[n]ho(t — nTs)

ho(t) w(t) =

' 2T.-T. 0 T.2r. @t ' 2T.-T. 0 T.2T. @t

An analog postfilter (lowpass filter) smooths the step signal and
removes remaining high frequencies
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Zero-order hold — frequency domain analysis

YO(Q) = Ys(Q)HO(Q), HO(Q) = TS sinc(ﬂ-G) e*jﬂ'Qfs
T
) H (@)
Hy (@)
0
0 QS/Z QS 303/2 Zﬂs
Q

Ho(£2) is not a sharp filter and aliased components around Q., 20, will
remain. The postfilter has to remove these.
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Linear interpolation [not in book]

Linear interpolation (“first order interpolation”) is obtained by
convolving ys(t) with a tent shape:

t, —T:<t<0
m(t)=STo—t, 0<t<T, yi(t) =Y ylnlhi(t — nTy)
0, otherwise
hi(t) yi(t)
1
' 2T-T. 0 T.2T. @t '2T-T.0 T.2T. |t
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Linear interpolation — frequency domain

Recall that the convolution of a rectangular pulse with itself gives a tent
shape. Hence

m(t) = % ho(t) x ho(—t) &  Hi(2) = Ts[sinc(ﬁg?s)]2

s

.
s H.©@)
Hy ()
Hy @)
0 \\ P
0 Q2 0 302 20
s s ¢ s

Due to the square, the linear interpolation filter will give much more
suppression around 5 and 2.
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Nonideal reconstruction

In general, Ho(Q2) # H,(Q): no ideal interpolation. A postfilter can
correct for this:

CHAQ)  f T /H(Q) Q] < 39
Hor (€2) = Ho(Q) { 0 otherwise
H’(Q Ts
HO(Q)\\

T 1\ 1\ I
-, -1, 0 1o, Q

m The shape correction in the passband could also be implemented in
digital domain.
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Bandpass sampling [not in book]

A bandpass signal with bandwidth B and center frequency F. is a signal
with nonzero spectral content at frequencies F defined by
0 < Fp < |F| < Fy, where F. = %(FL + Fy) and B= Fy — F;.

x|

L L L L I L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F(H2)

Fr =200 Hz, Fy = 250 Hz, B =50 Hz, F. = 225 Hz

According to the sampling theory, we should sample with F; = 500 Hz.
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Nyquist sampling of a bandpass signal

=

I I L L I L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (Hz)

00
ﬂ X(F)=F, S Xu(F — kF,) with F, = 500 Hz
k=—oc0

X

e k=0

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (H2)

Most of the band is empty: not very efficient to sample at 500 Hz.
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Nyquist sampling of a bandpass signal

=

I I L L I L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (Hz)

00
ﬂ X(F)=F, S Xu(F — kF,) with F, = 500 Hz
k=—oc0

M=

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (H2)

X

Most of the band is empty: not very efficient to sample at 500 Hz.
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Nyquist sampling of a bandpass signal

T T T
S
-1000 -BL)D -62]0 -4'00 -200 (; 200 4!'."0 6[')0 B(I]D 1000
F (Hz)
[e.e]
ﬂ X(F)=F. S Xo(F — kF.) with F, = 500 Hz
k=—oc0
T T T
< —ket
T
-1000 -B‘DO -GL)D »4‘00 -200 (‘) 200 4(')0 60‘0 S(‘]O 1000

Most of the band is empty: not very efficient to sample at 500 Hz.
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Nyquist sampling of a bandpass signal

T T T
=
-1000 -BL)D -6‘00 -4'00 -200 (; 200 4!'."0 6[')0 B(IJO 1000
F (H2)
[e.e]
ﬂ X(F)=F. S Xo(F — kF.) with F, = 500 Hz
k=—o00
T T

— k=0
—_—2

-1000 -B‘DO -GL)D »4‘00 -200 (l) 200 4(']0 6(;0 800 1000

Most of the band is empty: not very efficient to sample at 500 Hz.
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Nyquist sampling of a bandpass signal

T T T
=
-1000 -BL)D -62]0 -4'00 -200 (; 200 4!'."0 6[')0 B(I]D 1000
F (H2)
[e.e]
ﬂ X(F)=F. S Xo(F — kF.) with F, = 500 Hz
k=—o00
T
. — k=1
< e k=1
— k=2
k=-2
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Most of the band is empty: not very efficient to sample at 500 Hz.
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Sampling of a bandpass signal: example 1

Integer band positioning

If F; = mB, sampling with F; = 2B is possible without destructive
aliasing.

X
: |

L L L .
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F(H2)

In the current example Fy = 250, B =50 and m = 5.
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Sampling of a bandpass signal: example 1

=

I L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (Hz)

oo
ﬂx(F) =F. > X(F — kFs) with F; = 2B = 100 Hz

k=—00

Ly =

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

=

I L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (Hz)

oo
ﬂx(F) =F. > X(F — kFs) with F; = 2B = 100 Hz

k=—00

M=

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

= o

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

T T T
=
-1000 -B‘DD -600 -400 -200 0 200 41;0 GIIJO BéD 1000
F (H2)
00
ﬂX(F) —F. Y X,(F — kFs) with F, = 2B = 100 Hz
k=—o00
T T T T T
[‘ /‘ /l h h l\ -
s =1
k=-1
1 L L L 1 il L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

x

-1000

I L L
-800 -600 -400 -200 0 200 400 600 800
F (Hz)

1000

oo
ﬂx(F) =F. > X(F — kFs) with F; = 2B = 100 Hz

k=—00

T T T T T T
— 0
— =1
e k=1
— 2

. . .

-800 -600 -400 200 0 200 400 600 800 1000

-1000

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

=
-1000 -800 -600 -400 -200 . (?-'z) 200 400 600 800 1000
o0
ﬂX(F) = Fs S X,(F — kF.) with F; = 2B = 100 Hz
=—00

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

=
-1000 -800 -600 -400 -200 0 200 41;0 GIIJO BéD 1000
F (H2)
00
ﬂX(F) —F. Y X,(F — kFs) with F, = 2B = 100 Hz
k=—00
T T T T T T T —
—_—k=2
k=-2
k=3
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

=
-1000 -800 -600 -400 -200 0 200 41'.‘)0 6[‘)0 B(IJD 1000
F (H2)
00
ﬂX(F) —F. Y X,(F — kFs) with F, = 2B = 100 Hz
k=—00
T T T T T T T T —— k=0
— k=1
e k=1
k=-2
k=3
L L L —k=3
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

=
-1000 -BL)D -600 -400 -200 0 200 41'.‘)0 6[‘)0 B(IJD 1000
F (H2)
00
ﬂX(F) —F. Y X,(F — kFs) with F, = 2B = 100 Hz
k=—o00

T T T T T T T T p—r—
/)/I/‘/‘/NNM“(\‘\N =

e k=1

— k=2

k=-2

k=3

I , — k=3

-1000 -800 -600 -400 -200 0 200 400 600 800 1000 ——

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 1

=

I L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
F (Hz)

oo
ﬂx(F) =F. > X(F — kFs) with F; = 2B = 100 Hz

k=—o00

T T T T T T T T k=0

— =1
e k=1

— k=2
k=-2

k=3
‘ —
-1000 -800 -600 -400 -200 0 200 400 600 800 1000 | e k=4

m =5 is odd; the band F € {F,---Fy} endsup at F € {0--- B}
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Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

In the second example f; =200, B =50 and m = 4.

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!

4 .
TUDelft 2. sampling



Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

T
/l l\ )
L I L L L

L
-1000 -800 -600 -400 -200 0

200 400 600 800 1000

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

iy, =

L L
-1000 -800 -600 -400 -200 0

200 400 600 800 1000

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

=

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

e

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Sampling of a bandpass signal: example 2

[

-1000

ﬂ

-800

-600 -400 -200 0 200 400

600

800

1000

X(F)=Fs > Xi(F— kFs) with F; = 2B =100 Hz

-1000

k=—o00
\ \ T T .
-800 -600 -400 200 [) 200 400 600 800

1000

— k=0

e k=1
—_—=2
k=2

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:

inverted|
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Sampling of a bandpass signal: example 2

[

-1000

ﬂ

-800

-600 -400 -200 0 200 400 600 800

1000

X(F)=Fs > Xi(F— kFs) with F; = 2B =100 Hz

-1000

k=—o00
\ \ \ T T .
L /‘ /‘ /} W\ |\ A l\ L L
-800 -600 -400 200 0 200 400 600 800

1000

—— k=0

e k=1
— =2

k=3

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:

inverted|
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Sampling of a bandpass signal: example 2

[

-800 -600 -400 -200 0 200 400 600 800

1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

(AN =

—k=-3
-1000 -800 -600 -400 -200 0 200 400 600

800 1000

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

T T T T T T T pars

—et

e k=t

—_—2
k=-2

k=3

—_—=3

. . —k4

-1000 -800 -600 -400 200 0 200 400 600 800 1000

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Sampling of a bandpass signal: example 2

[

-1000 -800 -600 -400 -200 0 200

400 600 800 1000

ﬂx(F) =Fs Y Xo(F — kFs) with F; = 2B = 100 Hz

k=—o00

1 T T T T T T T pars

— ket

=

—_—ke2
k=-2

k=3

—k=3

. —4

-1000 -800 -600 -400 200 [ 200 400 600 800 1000 | —— s

m =4 is even; the band F € {F,---Fy} endsup at F € {—B---0}:
inverted!
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Reconstruction and downconversion

m odd
:m = mﬂ M LT h ’\m - The spectra of the sampled even and
odd band positioned signals are both
free from aliasing

™ W w w0 e
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Reconstruction and downconversion

B ™ " B "R

<3
TUDelft

The original signal can be reconstructed
using a bandpass filter g(t):

o
xo(t) = > x[nlg(t —nT), with
n=—o0
in Bt
g(t) = smwt cos2mF .t
T

Note: g(t) is equal to the interpolation
function of bandlimited signals h,(t),
modulated with the carrier frequency
Fec

2. sampling




Reconstruction and downconversion

Downconversion to baseband:
alternatively, we may reconstruct the
signal at baseband

m odd i
:m _ M M il /N ’\ ’\m __ The baseband spectra with m = even
are inverted.
This is easily corrected in digital
domain: take y[n| = (—1)"x|[n].

m even
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Arbitrary band positioning
Now consider Fyy # mB. How to choose F.?7

Spectra are shifted by kF; and we need to avoid aliasing!
(k-1)F, KF,

| (I

F,F o _FEND

H L L H

(k-1)F.-F, KF -F,
Conditions for Fq:
(k—1)Fs—F. < F 2 (Fy Fs 2 Fy
I R ey L |
{ kKFs—Fy > Fu ~ k\B)~B " k—1\B
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Arbitrary band positioning

How to choose Fs?

For our signal, we know Fp
and B.

Then, we can choose an
Fs/B along the vertical line
corresponding to Fy /B

(This is rather detailed and you are not expected to be able to reproduce this.)
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To do:

m Refresh your memory of EE2S1 Signals & Systems: sampling theory.
It is summarized in Chapter 6.1-6.4.

m Study new material:

® Anti-aliasing filter
® Non-ideal reconstruction
® Bandpass sampling

m Try to make exercise ...

Next lecture, we consider upsampling and downsampling (Ch. 6.5).
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TUDelft 2. sampling




	overview
	ideal sampling
	aliasing
	Nyquist condition

	ideal reconstruction
	non-ideal sampling
	anti-aliasing filter
	practical ADC

	non-ideal reconstruction
	zero-order hold
	linear interpolation
	postfilter

	bandpass sampling

