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Sampling – revisited
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Recap of ideal sampling and reconstruction

Bandpass sampling

Nonideal reconstruction

Prior knowledge: EE2S1 Signals & Systems

Continuous-time Fourier transform

Sampling and reconstruction (refreshed today)
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Ideal sampling

System
ADC DAC

analog-to-digital digital-to-analog

xa(t)
x [n] y [n]

ya(t)

TsTs

Digital

In absence of a digital system (y [n] = x [n]), the goal for ideal
sampling/reconstruction is to have ya(t) equal to xa(t).

We write xa(t) rather than x(t) so that we can better distinguish the
spectra of xa(t) and x [n] in the notation
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Ideal sampling

ADC x[n]xa(t)
Ts = xa(nTs) x [n]

impulse
to

sequence
xa(t)

xs(t)

s(t)

= xa(nTs)

Ts is the sampling period, Fs = 1
Ts

is the sampling frequency [Hz].

We first model “ideal sampling”, where the sampled signal is
represented by a train of delta pulses xs(t)

2. sampling 4 / 33



Ideal sampling
Using

s(t) =
∑
n

δ(t − nTs) impulse train

we can write

xs(t) = xa(t) s(t) =
∑
n

x(nTs)δ(t − nTs) =
∑
n

x [n]δ(t − nTs)

1087654321 11

xs (t)

9

xs(t) and x [n] have a 1-to-1 relation (same information content) —
we first analyze xs(t).
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Ideal sampling
The Fourier transform of xs(t) is

Xs(Ω) = F

{∑
n

x(nTs)δ(t − nTs)

}
=
∑
n

xa(nTs)F {δ(t − nTs)}

=
∑
n

xa(nTs)e−jΩTsn =
∑
n

x [n]e−jωn

For a sequence x [n], the Discrete-Time Fourier Transform (DTFT) is
therefore defined as

X (ω) =
∑

x [n]e−jωn

so that X (ω) = Xs(Ω), where ω = ΩTs is the normalized angular
frequency.

X (ω) is periodic with period 2π: it suffices to consider a single
period: −π ≤ ω ≤ π, the fundamental interval.
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Relation of Xs(Ω) to Xa(Ω)

S(Ω)

t2TsTs0−Ts−2Ts

s(t)
⇔

−Ωs 0 Ωs Ω

The Fourier transform of s(t) is also a series of delta pulses:

S(Ω) =
2π

Ts

∑
k

δ(Ω− kΩs) , Ωs =
2π

Ts
= 2πFs

The Fourier transform of xs(t) = xa(t) s(t) is then

Xs(Ω) =
1

2π
Xa(Ω) ∗ S(Ω) =

1

Ts

∑
k

Xa(Ω− kΩs)

This is a sum of shifted spectra of Xa(Ω).
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Aliasing

The spectrum Xs(Ω) is periodic with period Ωs .

The fundamental interval is −1
2 Ωs ≤ Ω ≤ 1

2 Ωs , which corresponds to
−π ≤ ω ≤ π.

The summation leads to aliasing.

Ω

|Xa(Ω)|

Ω

|Xs(Ω)|

S(Ω)

Ω

Ωs0−Ωs

Ωs−Ωs

Ωs−Ωs 0

0

− 1
2 Ωs

1
2 Ωs
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Nyquist condition

We do not want the copies Xa(Ω− kΩs) to overlap each other.

The Nyquist condition says that no overlap occurs if x(t) is
bandlimited with maximal frequency Ωmax <

1
2 Ωs ; and in that case

xa(t) can be recovered from its samples x [n] (Shannon theorem).

This minimal sampling frequency 2Ωmax is the Nyquist frequency.

Indeed, in that case we can recover xa(t) from xs(t) using an ideal
lowpass filter with passband Ωc = 1

2 Ωs .

xa(t)

s(t)

LPF
idealx [n] xs(t)

x̂a(t)

reconstructionsampling

impulse
to

sequence

sequence
to

impulse

xs(t)
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Nyquist condition satisfied

If Ωmax <
1
2 Ωs , then the shifted spectra don’t overlap, and perfect

reconstruction is possible.

|Xa(Ω)|

S(Ω)

|Xs(Ω)|

0

Ω

Ω

Ω

Ω

0

0

−Ωs Ωs

−Ωs

−Ωs Ωs

Ωs

|X̂a(Ω)|

−Ωmax Ωmax0
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Nyquist condition not satisfied

If Ωmax ≥ 1
2 Ωs , then the shifted spectra overlap, and perfect

reconstruction is not possible (destructive aliasing)

|Xa(Ω)|

S(Ω)

|Xs(Ω)|

0

0

Ω

Ω

Ω

Ω

0

0

−Ωs Ωs

−Ωs

−Ωs Ωs

Ωs

|X̂a(Ω)|

−Ωmax Ωmax
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Ideal reconstruction
If the Nyquist condition is satisfied, we can recover x(t) from xs(t)
using an ideal lowpass filter (“brick-wall filter”):

Xa(Ω) = Xs(Ω)Hr (Ω) ⇔ xa(t) = xs(t) ∗ hr (t)

=
∑

x [n]hr (t − nTs)

where

Hr (Ω) =

{
Ts |Ω| < 1

2 Ωs

0 otherwise
⇔ hr (t) =

sin(πt/Ts)

πt/Ts
= sinc(π

t

Ts
)

The filter is called an anti-imaging filter, interpolation filter, or
reconstruction filter. The reconstruction is a sum of scaled and
shifted sinc functions.

(Note: “sinc” has various definitions, with or without π)
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Ideal reconstruction

x̂a(t) =
∑

x [n]hr (t − nTs)
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reconstruction of sin(0.4 t)

Note that hr (mTs) =

{
1 m = 0

0 otherwise

⇒ x̂a(mTs) =
∑
n

x [n] hr ((m − n)Ts)) = x [m]

Hence, the filter smoothly interpolates the x [m].
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Non-ideal sampling: Anti-aliasing filter

The anti-aliasing filter is an analog filter which we apply before the
ADC, to remove all frequencies above 1

2 Ωs .

Haa(Ω) =

{
1, |Ω| ≤ 1

2 Ωs

0, elders

0

1

−Ωs

2
Ωs

2

This prevents aliasing later during sampling. (The distortion of
frequencies above 1

2 Ωs due to this filter is unavoidable.)

A potential problem is that a sharp filter (small transition band) has
high complexity, while a not-so-sharp filter might still give aliasing.

A sharp IIR filter might also give phase distortion at high frequencies.

Two solutions follow.
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Anti-aliasing filter
Approach 1

Choose the desired cut-off frequency Ωc .

E.g., for audio, set Ωc = 2π · 20 kHz, the Nyquist rate will be
Fs = 40 kHz

Take a slightly higher sampling rate: Ωs = (1 + r)2Ωc , with
0 < r < 1, e.g., Ωs = 2π · 44 kHz

We can now use a non-ideal anti-aliasing filter Haa(Ω), with a
transition band between Ωc and 1

2 Ωs .

In fact, the stopband can be even a bit larger: Ωs − Ωc .
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Anti-aliasing filter

Ω

Xs(Ω)

0

Haa(Ω)

−Ωs

Ωs − Ωc

−Ωc− 1
2

Ωs
1
2

ΩsΩc Ωs

After sampling, we can digitally filter out the undesired components
between Ωc and 1

2 Ωs .

− 1
2 Ωs

−π

ADC

Ts
1

0

−(Ωs − Ωc ) Ωs − Ωc

Ωc−Ωc
1
2 Ωs

xa(t)

lowpass

Haa(Ω)

analog

x[n]

lowpass

Hda(ω)

digital

1

0 π
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Anti-aliasing filter
Approach 2 [details in next lecture]

Use a cheap Haa(Ω) with a wide transition band

Oversample xa(t) with a large factor M, e.g., Ωs = 8Ωc = 2MΩc

After sampling, digitally remove the unwanted frequencies above Ωc ,
and reduce the sample rate by M. [Covered in a future lecture.]

0

1
Haa(Ω)

−Ωc Ωc−MΩc

0

1
Hda(ω)

− π
M

π
M

−π π

MΩc
1
2
Ωs− 1

2
Ωs

2. sampling 17 / 33



Practical ADC

Ts

xa(t)

lowpass

Haa(Ω)

ADC
analog

x̂ [n]

lowpass

Hda(ω)

digital

Q
sample/hold/quant.

The hold circuit is often based on a capacitance (buffer) to maintain
the voltage. The switch is often a MOSFET transistor.

The quantizer requires a voltage reference, a voltage divider, and a
series of comparators.
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Nonideal reconstruction

Ideal reconstruction with a sinc filter is not implementable:

The delta impulses in ys(t) are not realizable

The sinc filter is not causal

The impulse response has infinite duration

Instead, we can use other filters such as a zero-order hold or a
first-order hold

D/A

ya(t)

lowpass
postfilter

Hpf (Ω)y [n]
hold

Ts

y0(t)ys(t) h0(t)

DAC
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Zero-order hold

The zero-order hold circuit replaces the sequence of x [n] by a step-wise
changing analog signal:

h0(t) =

{
1, 0 ≤ t ≤ Ts

0, otherwise

y0(t) = ys(t) ∗ h0(t)
=

∑
y [n]h0(t − nTs)

1

tTs 2Ts−Ts−2Ts

h0(t)

tTs 2Ts−Ts−2Ts

y0(t)

0 0

An analog postfilter (lowpass filter) smooths the step signal and
removes remaining high frequencies
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Zero-order hold – frequency domain analysis

Y0(Ω) = Ys(Ω)H0(Ω) , H0(Ω) = Ts sinc(π
Ω

Ωs
) e−jπ

Ω
Ωs

0
s
/2

s
3

s
/2 2

s

0

T
s H

r
( )

H
0
( )

H0(Ω) is not a sharp filter and aliased components around Ωs , 2Ωs will
remain. The postfilter has to remove these.
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Linear interpolation [not in book]

Linear interpolation (“first order interpolation”) is obtained by
convolving ys(t) with a tent shape:

h1(t) =


t, −Ts ≤ t ≤ 0

Ts − t, 0 ≤ t ≤ Ts

0, otherwise

y1(t) =
∑

y [n]h1(t − nTs)

0

h1(t)

tTs 2Ts−Ts−2Ts

y1(t)

tTs 2Ts−Ts−2Ts

1

0
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Linear interpolation — frequency domain
Recall that the convolution of a rectangular pulse with itself gives a tent
shape. Hence

h1(t) =
1

Ts
h0(t) ∗ h0(−t) ⇔ H1(Ω) = Ts [sinc(π

Ω

Ωs
)]2

0
s
/2

s
3

s
/2 2

s

0

T
s H

r
( )

H
0
( )

H
1
( )

Due to the square, the linear interpolation filter will give much more
suppression around Ωs and 2Ωs .
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Nonideal reconstruction
In general, H0(Ω) 6= Hr (Ω): no ideal interpolation. A postfilter can
correct for this:

Hpf (Ω) =
Hr (Ω)

H0(Ω)
=

{
Ts/H0(Ω) |Ω| < 1

2 Ωs

0 otherwise

Hpf (Ω)

−Ωs − 1
2

Ωs
1
2

Ωs Ωs

0−Ωs − 1
2

Ωs
1
2

Ωs Ωs

TsHr (Ω)

H0(Ω)

0

The shape correction in the passband could also be implemented in
digital domain.
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Bandpass sampling [not in book]

A bandpass signal with bandwidth B and center frequency Fc is a signal
with nonzero spectral content at frequencies F defined by
0 < FL < |F | < FH , where Fc = 1

2 (FL + FH) and B = FH − FL.

FL = 200 Hz, FH = 250 Hz, B = 50 Hz, Fc = 225 Hz

According to the sampling theory, we should sample with Fs = 500 Hz.
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Nyquist sampling of a bandpass signal

ww� X (F ) = Fs
∞∑

k=−∞
Xa(F − kFs) with Fs = 500 Hz

Most of the band is empty: not very efficient to sample at 500 Hz.
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Sampling of a bandpass signal: example 1

Integer band positioning

If FH = mB, sampling with Fs = 2B is possible without destructive
aliasing.

In the current example FH = 250, B = 50 and m = 5.
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Sampling of a bandpass signal: example 1

ww�X (F ) = Fs
∞∑

k=−∞
Xa(F − kFs) with Fs = 2B = 100 Hz

m = 5 is odd; the band F ∈ {FL · · ·FH} ends up at F ∈ {0 · · ·B}
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Sampling of a bandpass signal: example 2

In the second example FH = 200, B = 50 and m = 4.

ww�X (F ) = Fs
∞∑

k=−∞
Xa(F − kFs) with Fs = 2B = 100 Hz

m = 4 is even; the band F ∈ {FL · · ·FH} ends up at F ∈ {−B · · · 0}:
inverted!
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Reconstruction and downconversion

m odd

m even

The spectra of the sampled even and
odd band positioned signals are both
free from aliasing

Downconversion to
baseband: alternatively, we may
reconstruct the signal at baseband

The baseband spectra with m = even
are inverted.
This is easily corrected in digital
domain: take y [n] = (−1)nx [n].
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Reconstruction and downconversion

m odd

m even

The original signal can be reconstructed
using a bandpass filter g(t):

xa(t) =
∞∑

n=−∞
x [n]g(t − nT ), with

g(t) =
sinπBt

πBt
cos 2πFct

Note: g(t) is equal to the interpolation
function of bandlimited signals hr (t),
modulated with the carrier frequency
Fc

Downconversion to baseband:
alternatively, we may reconstruct the
signal at baseband

The baseband spectra with m = even
are inverted.
This is easily corrected in digital
domain: take y [n] = (−1)nx [n].
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Arbitrary band positioning

Now consider FH 6= mB. How to choose Fs?

Spectra are shifted by kFs and we need to avoid aliasing!

Conditions for Fs :{
(k − 1)Fs − FL ≤ FL

kFs − FH ≥ FH
=⇒

2

k

(
FH
B

)
≤ Fs

B
≤ 2

k − 1

(
FH
B
− 1

)
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Arbitrary band positioning

How to choose Fs?

For our signal, we know FH
and B.

Then, we can choose an
Fs/B along the vertical line
corresponding to FH/B

(This is rather detailed and you are not expected to be able to reproduce this.)
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To do:

Refresh your memory of EE2S1 Signals & Systems: sampling theory.
It is summarized in Chapter 6.1–6.4.

Study new material:

• Anti-aliasing filter
• Non-ideal reconstruction
• Bandpass sampling

Try to make exercise ...

Next lecture, we consider upsampling and downsampling (Ch. 6.5).
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