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Course topics — DSP part

m Sampling - revisited

m Downsampling and upsampling  courselab 1
m Discrete Fourier Transform (DFT)

m Spectral analysis  courselab 2

m Sigma-Delta ADC  courselab 3

m Fast Fourier Transform (FFT)

Prior knowledge: EE2S1 Signals & Systems (refreshed today)

m Discrete-time signals, LTI systems, convolution
m DTFT, z-transform

m Sampling and reconstruction
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Introduction

What is a signal?

m 1-D: Speech, communication signal (output of an antenna): x[n]
m 2-D: Image: s[i. /]

m 3-D: Video: s[i,/, n]

m N-D: Output of NV antennas (stacked in a vector): x[n|
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Introduction

Classes of signals

» Continuous time (analog) vs. discrete time (digital)
m Continuous amplitude vs. quantized

m Deterministic (DSP) vs. random (SSP)
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Introduction

Goals of signal processing

m Processing of analog signals using discrete-time operations / digital
hardware

m Estimation of parameters (properties of the signal)

m Analysis of the system that is in between an input and an output
signal (the “channel”)

» Modeling of such signals/systems (cf. machine learning)

rital-to-analog

analog-to-digital d

Xq[n] »| Digital ya[n]
System

x(t) —{ ADC = DAC —— y(1)
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Example application: radio astronomy
Cygnus A - a quasar

Model: a large collection of point sources; the g-th source sq(t) at
location (pixel) z, has variance (power) O'g, which is shown in the
intensity image.
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Example application: radio astronomy
The Very Large Array (VLA) - New Mexico

The antenna signals from the 27 dishses are stacked in a vector X(t).
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Example application: radio astronomy

Data processing

10 MHz 100 kHz 10 s
10 us
il(t)‘ED,
P RF x(t)[<~F x«[nl xk[nx[n]” R
to filter X
bank 10 s

BB
*”“’T—EF

The noisy signals are moved to baseband, split into small
time-frequency bins, and correlated to each other to form short-term

correlation matrix estimates Rj. These are stored.
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Example application: radio astronomy

Image formation

correlations major cycle minor cycle CLEANed
degrid image
+FFT
(M)
[esr |
1
r—= [Rij,k] — ngrlldFd';’_‘l_g :WID(Z source Iclean(z)
H detect
(M) sky model

The observed correlations are stacked in a vector r (a few million
entries). To form the image, the observation matrix M has to be
inverted; this numerically tricky step is done iteratively using FFTs. In
the minor cycle, detected sources are subtracted from the data.
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Recap: Discrete-time signals - Ch.1

A discrete-time signal is an infinite sequence

X[n]7 n=--- 7_17071727"'

We write
X = [ ,X[—l]j,xlll,X[2]w“}

where the box denotes time 0.

m We usually refer to the signal als x[n], but correct is simply x.

m The square brackets denote that the indices n are integers

'i"UDeIft 1. introduction and recap



Recap: Discrete-time signals - Ch.1

Basic signals

w Impulse o[n] = [---,0,[1].0,0, -] "

(does not have infinite amplitude!) e oo
.Stepu[n]:[”'70771717"'] 10||||
m Pulse of width N: p[n] = u[n] — u[n — N] 012

m Complex exponential sequence:
x[n] = Aa"u[n], with A,a € C
We can write a signal as a sum of (scaled) shifted impulses:

o0

x[nl = > x[k]d[n - k]

k=—o0
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Energy and power

m The energy of a signal x[n| is

Eo= Y P

n=—oo

m The power is the average energy per sample:
1 N
= i 2
dmonr 2 Kl

n=—N

P«

m /5 is the space of signals with finite energy. More in general:

£ = {x | (X Ix[nIP)P < oo}
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Systems

A system 7T transforms a signal x into a signal y.

y =T{x}
We often write with abuse of notation y[n| = 7{x|[n]}

Examples

m Time shift (delay):
ylnl = x[n—1]
m Reverse: y[n] = x[—n]
» Moving-average (MA):
ylnl =
T (x[n] 4+ x[n = 1]+ x[n —2])

m Summer (accumulator):
n

yll= Y x[kl = x[nl+y[n—1]

k=—0oc0

<3
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x[n] x[n—1]

o —

y[n—1]

— y[n]
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Systems

m Some systems can be described by a Linear Constant Coefficient
Differential Equation:

y[n] + a1y[n — 1] + axy[n — 2] = box[n] + bix[n — 1] + box[n — 2]

m The output signal can be computed via a recursion:

y[n] = —a1y[n — 1] — aay[n — 2] + box[n] + bix[n — 1] + box[n — 2]

ylnl = gyln = 1] + 3x[n] + 3x[n — 1]

x[n] > DD = y[n]

0 -

NI

A

\i

N

A
N[ =

1 a1
Z z

'i"UDeIft 1. introduction and recap



Systems

m A system is linear if it satisfies superposition:

Y1[”]:T{X1[”]} = X1|n| + asxz|n
woln] = Tholn]l ary1[n] 4 aaye[n] = T{aix[n] + aaxo[n]}

m A system is time-invariant if a delayed input leads to a delayed output:

yln] = T{x[nl} = yln—1]=T{x[n - 1]}

X[n] —{ T [—= yln]

= x[n—=1] —» T |—» y[n—1]

In this course, we will mostly (but not always) consider LTI systems.
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Systems

m A system is causal if the output at time n does not depend on future
values of the input.

m A signal is bounded if it has a maximum amplitude Xxqay:
Ix[n]| < Xmax

The signal is in /.

m A system is “bounded-input bounded output” (BIBO) stable if any
bounded input leads to a bounded output: 7 : foo — Vo
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Recap: Convolution and the impulse response - Ch.2

m The impulse response of a system is the response to an impulse at
time O:

hin] = T{d[n]}

= A finite impulse response (FIR) system has h[n] of finite length,
otherwise it is an infinite impulse response (IIR) system.

m An LTI system is completely described by its impulse response.
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Convolution and the impulse response - Ch.2

Proof:

Recall x[n] = x[k]d[n — A].
k=—0c0
yln] = T{x[n]} = T{ > x[Klo[n - k]} = > xIKT{5ln— K]}
k=—o00 k=—00
= > x[k]h[n — K]
k=—0c0

m This is the convolution sum. Notation: yn| = x[n] * h[n].

x[r] yln]
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Properties of the convolution

Convolution has similar properties as a multiplication (but acts on

sequences):

» Commutative: x * h = hxx = cascade/series: hy * hy = hy x hy

m Associative: (x xg)*h= xx*(g=*h)

m Distributive: x * (hy 4+ hy) = x % hy + x* hy = parallel

hy |—*™VY

X—1 p h >V = X— hy
h1 * hy
h
X ——» %é—»y = X ——»=] hi+h VY
h
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Properties of the convolution

m The “unit element” of the convolution is 4[n]:

x[n] * 6[n] = x[n]

= A unit delay has impulse response §[n — 1]:

x[n] % 0[n — 1] = x[n — 1]
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Properties of the convolution

m A causal system has h[n] = 0 for n < 0 (no response before the
impulse arrives).

m A BIBO stable system has an impulse response that is absolutely
summable:
o0
> Al < oc
—00

That is: h[n| € /1.

m An FIR system is always stable.
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Convolution as a matrix-vector product

=2 || e 0 x(-2]
ya || i A X[ 1]
= | - hR A
11 A3 hR) ] () 0]
v2 < hla) KB A2 Al o) <L)

m linear <+ matrix-vector;
m causal <> lower triangular

® time invariant <> constant along diagonals ( “Toeplitz")
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Computing the convolution

y[n] = Z x[k]h[n—k] = ---+x[0]h[n]+x[1]A[n—1]4+x[2]A[n—2]+- - -
k=—00
1 h[n] 1 x[0]h[n] 1 x[K]
TR 012 012
hln—1] ) x[1]h[n — 1] (k = 1)
012 123
h[n — 2] <2lhln—2] (k=2) Y
1
5
——o0
0123 0123 ~210123
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Convolution in 2D

Original image

Horizontal Edge Detection (Sobel)

In 2D convolution, each pixel is replaced by a weighted sum of its
neighbor pixels (the kernel specifies the weights)

-1 0 1
Convolution kernel (“Sobel-x"): h[i,j]= | —2 [0] 2
-1 0 1
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Recap: The z-transform - Ch. 4

The z-transform of a discrete-time signal x|[n] is defined as

o0

X(z)=Z(x[n) = Y_ x[n]z""

n=—oo

m For example:
x=[-,0,1,2,[34,50,-] = X(z) =22 +2z' +3+4z ' + 522

x[n] = a"u[n] =
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The z-transform

Properties:
ax[n] + bylr]
x[n — k|
a"x[n]
x[—n]
x[n] = o[n]

3
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aX(z) + bY(2)
z7kX(2)

X(2
X(z
X(z

) often a = e/
)=1
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The z-transform
Convergence

Along with X(z), we should specify the region of convergence (ROC).

m Different x[n] can give the same X(z) but with different ROC.

m Generally we are only interested in ROCs that contain the unit circle
(where the Fourier transform will be defined).

dapy
\ |/
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The z-transform

The transfer function
m An LTI system is defined by its impulse response h[n]. lts z-transform
is
H(z) =) hln]z™"
It is called the transfer function.

m The output of the system is the convolution sum y[n] = x[n| % h[n].
Its z-transform is

Y(z)=)_ {Zx[k]h[n — k]} z "

n k

= x[K] {Z hin — k]z_(”_k)} z 7k
k n

= X(z)H(z)
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The z-transform

Analyzing systems with feedback loops

x[n) —=@—[F(z) | vInl

Y(z)(1 - F(2)G(z2)) = F(2)X(2)
Y(z)= 1= If((zz))G(z)X (2) = HE= dllre—Ct|§§;h

m Feedback loops result in rational transfer functions

m But: the derivation is also valid if F and/or G are rational transfer
functions themselves!
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The z-transform

Rational transfer function

m For the LCCDE

N M
> awyln— Kl => bixn— K,
k=0 k=0

we find after the z-transform

N M
Z az kY (2) = Z bz *X(z2)
k=0

o H(z) = YEZ) Y ebzk  B(2)

i
o

DTSN aak AR)

m Thus, the transfer function is a rational function.
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The z-transform

Poles and zeros

Consider the rational transfer function

m The poles of H(z) are the solutions of A(z) = 0, the zeros are the
solutions of B(z) = 0.

Some of them could cancel each other.

m We also have to consider poles and zeros at z = 0 and z = co.
If we do that, the number of poles is equal to the number of zeros.

m By definition, the ROC cannot contain any poles.
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The z-transform

m Causal system For a causal LTI system, we have h[n] =0, n < 0.
H(z) = hlnlz™" = h[0] + h[1]z" " + -
n=0

Consequently, an LTI system is causal iff the ROC includes the
outsize of a circle, including z — oo

m Stable system A system is BIBO stable iff Z |h[n]| < oc.

Note that
H(2)| < > |hlnlz™" = > |Aln]l |z~

Therefore, |H(e/*)| < oo: the unit circle is in the ROC.

m A causal stable system has all poles within the unit circle.
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Recap: The discrete-time Fourier Transform - Ch. 3

Definition

[e.9]

X(w) =F{x[nl} == > x[n]e ="

n=—oo

#m X(w+ 271) = X(w): periodic in w, period 27:
It suffices to consider the interval w € [, 7] (the fundamental
interval)

n X(w) = [X(w)]e?),
where | X(w)|: amplitude spectrum, ¢(w): phase spectrum
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The Discrete-Time Fourier Transform

Relation to the z-transform

Given X(z), the DTFT is obtained by taking z = &/
It is necessary that |z| = 1 is in the ROC.
Many books write the DTFT as X(e/*).

Consequently,
B Y(w)=Hw)X(w)
m H(w) =Y h[n]ewn
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The Discrete-Time Fourier Transform
Inverse DTFT

1 /™ _ 1/2 .
x[n] = —/ X(w)e"dw = / X(f)efzﬂf”df (w = 27f)
2m ) ~1/2
Energy and Parseval
S 2 L[ 2
Ec= Y KnP = o | IX(@)Fdw

Si(w) := |X(w)|? is called the energy spectral density
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The Discrete-Time Fourier Transform

Real-valued signals

If x[n] = x*[n], then
Xi(w)=X(-w)  =X(z1)

z=elw

and hence we have symmetry relations:

(X(=w)l = [X(W)],  ¢(-w) = —o(w)

In this case, it suffices to plot the spectrumon 0 <w <7
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The Discrete-Time Fourier Transform

Properties
ax[n] + by[n] & aX(w) + bY(w)
x[n — k| & e @k X (w)
x[—n] & X(—w)
x*[n] & X*(—w)
(x1 * x2)[n] & X1(w)Xa(w)
eyl e (X Y)() = £ T XY (w — A
e/“0nxn] = X(w — wp)
x[n] coswon & (X (w — wo) + X(w + wp))
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The Discrete-Time Fourier Transform

Example
Consider
x[n] = a"u[n], —-l<a<l1
We find
°© . °° . 1
X _ n,—jwn _ —jwyn _ i
(w) Z ae Z(ae ) pyeT
n=0 n=0
Sul(w) = IX(@)2 = X(@)X*(w) = &
e N (1 - ae7#)(1 — aelv)
B 1
~ 1—2acosw + a2
z
TUDelft
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The Discrete-Time Fourier Transform

Example
x[n] = 0.5" u[n] x[n] = (-0.5)" u[n]
16 1G . - .
0.5 I 0 D
0 D -1
0 2 4 6 8 10 0 2 4 6 8 10
n n
S () = [X(@)P S (@) = X(@)?
4 4
0 0- ’ - ;
—pi —pi/2 0 pi/2 pi —pi —pi/2 0 pi/2 pi
[0} (O]
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The Discrete-time Fourier Transform

Example (2)
Consider
[n] = A, 0<n<L-1
Xt = 0, elders
We find

L-1 - )

_; 1— e vt _; _qy sin(wl/2)

X — AeJwn — A== _ A Jj(w/2)(L—-1) 2\ E/ <)
(w) ,;) e T e n(0)2)

This function is called the Dirichlet kernel: a “periodic sinc”
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The Discrete-time Fourier Transform

Example (2)
sin(wl/2)
X = Al |——= X(0) =|A|L
X = A OB XO) = 1A
X(@)
10
S —pil2 0 pir2 pi zero crossings for
_ o) w=+3k (k#0)
.pl | ' '
pl/s\ R\‘R‘R NN e N
el N \I\] NN phase slope <> delay
it " s o2 . phase jumps (7) <> sign changes

[0}
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Phasors

Consider a rational transfer function H(z) =

How to draw |H(w)| and ¢(w)?

z = el

[H(w)|
4
a=0.7
b=0
2
0
—pi —pil2 0 pil2 pi
®
o)
pi
0 _._’—\_/’_
-pi " - .
—pi —pil2 0 pil2 pi
(0]

z— b

z—a

|z — b]

|z - a

[H(w)| =

d(w) = £L(z — b) — £(z — a) mod 27

[H(w)|
20
a=0.9
b=-0.8
10
0
—pi —pil2 0 pil2 pi
®
0(w)
pi
N

i pir2

0 pil2 pi
®

<3
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Phasors

Lowpass H)l
100
a=0.9 +-j0.05
50 b=0, 0 |
0
—pi —pi/2 0 pil2 pi
®
0(w)
pi
0
—pi " " )
—pi —pi/2 0 pi’2 pi
@
Highpass H)l
100
a=-0.9 +-j0.05
50 b=0, 0
0
—pi —pi/2 0 pil2 pi
®
0(w)
pi
0 1
-pi " " .
—pi —pi/2 0 pi’2 pi
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Phasors
Bandpass

[H()|
20
a=0.6 +-j 0.75
10 b=0, 0
0
—pi —pi/2 0 pil2 pi
®
o(w)
pi
0 /‘\‘/\/
-pi - " " .
—pi —pi/2 0 pi/2 pi
@
[H()|
a=0.588 +- | 0.784
4 = —j08
: | 1
—pi —pi/2 0 pil2 pi

o
o(w)




Linear phase filters

An LTI system has linear phase if its frequency response can be written

as )
H(w) = A(w)eJew=h)

in which A(w) and «, 3 are real-valued.

We have A(w) = £[H(w)|

m e /% is interpreted as the response of a delay, 7.
If [H(w)| is flat in its passband (ideal filter), then it does not distort
the shape of an input signal in its passband (e.g., a pulse)

do(w)

dw
For a bandpass signal, this specifies the delay of its envelope.

= More generally, consider the group delay 7, = —
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Linear phase filters
A filter can have linear phase only if it is FIR with order M, of the form

h[n] = h[M — n]  (symmetric)

or
h[n] = —h[M — n] (antisymmetric)

Location of zeros:

From h[n] = eh[M — n], e = +1, it follows !
H(z) = ez MH(z1).

m If zy is a zero, then also 1/z is a zero.

m If h[n] is also real-valued, then also z; and \y

* \
1/z; are zeros. o
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Allpass filters - Ch. 5.7 [New]
H(z) is an allpass filter if |H(e/*)| = 1 for all w.
Example: H(z) = z 1.

m Every rational allpass function with real-valued coefficients has the
form

H(z) ay +apm_1z Y4+ Fagz Mt L M z7MA(z™1)
Z pr— — - 7
l+az7l+- - +ay_1z M+l 4 g z—M A(z)

Hence, the numerator polynomial is the reverse of the denominator.
(For complex coefficients, also a conjugation is needed.)

m Proof: ) )
A |AT(e)|

) = Ta@=) ~ [atem)
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Allpass filter

If zo is a zero of H(z), then 1/zj is a pole.
Hence, complex poles and zeros come in

groups of 4: z; is also a zero, and 1/z] is a /\ .
pole. \ ©

For a stable causal allpass filter, all zeros are outside the unit circle.
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Minimum phase filters

H(z) is a minimum phase filter if all poles and zeros are within the unit
circle.

Hence, also H™'(z) is causally stable.

m In contrast, an allpass filter has all zeros outside the unit circle; its
inverse is causally unstable but anti-causally stable.
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Minimum phase filters
A causal stable transfer function can be factorized as

H(z) = Hme(2)Hap(z), with Hpe(z) minimum phase, H,p(z) allpass

The algorithm for this is:

m Assign all poles of H(z) to Hpr(z).

= Assign all zeros of H(z) located within the unit circle to H,,s(z), and
those outside the unit circle to H,,(z).

m The zeros of H,,(z) also specify the poles of H,,(z).

m These in turn are assigned as zeros to H,,(z)

Example:

1-3z71  1-1/3z1 1-3z71

H(z) = _ .
(2) =108, 7 ~ T-05. 1 1-1/3.1
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To do:

m Refresh your memory of EE2S1 Signals & Systems: go over Ch. 1-5

m Study new material:

® 5.7 Allpass functions

m Try to make exercise ...

Next lecture, we revisit sampling (Ch. 6).
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