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Course topics – DSP part

Sampling - revisited

Downsampling and upsampling courselab 1

Discrete Fourier Transform (DFT)

Spectral analysis courselab 2

Sigma-Delta ADC courselab 3

Fast Fourier Transform (FFT)

Prior knowledge: EE2S1 Signals & Systems (refreshed today)

Discrete-time signals, LTI systems, convolution

DTFT, z-transform

Sampling and reconstruction
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Introduction
What is a signal?

1-D: Speech, communication signal (output of an antenna): x [n]

2-D: Image: s[i , j ]

3-D: Video: s[i , j , n]

N-D: Output of N antennas (stacked in a vector): x [n]
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Introduction
Classes of signals

Continuous time (analog) vs. discrete time (digital)

Continuous amplitude vs. quantized

Deterministic (DSP) vs. random (SSP)

xq [n]x(t)
x[n]

C/D Q

continuous
to discrete quantizer

analog to digital converter (ADC)
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Introduction
Goals of signal processing

Processing of analog signals using discrete-time operations / digital
hardware

Estimation of parameters (properties of the signal)

Analysis of the system that is in between an input and an output
signal (the “channel”)

Modeling of such signals/systems (cf. machine learning)

Digital
System

ADC DAC

analog-to-digital digital-to-analog

x(t)
xq[n] yq[n] y(t)
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Example application: radio astronomy
Cygnus A - a quasar

Model: a large collection of point sources; the q-th source sq(t) at
location (pixel) zq has variance (power) σ2

q, which is shown in the
intensity image.
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Example application: radio astronomy
The Very Large Array (VLA) - New Mexico

The antenna signals from the 27 dishses are stacked in a vector x̃(t).
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Example application: radio astronomy
Data processing

BB
filter
bank

x(t) xk [n]

100 kHz
10 µs

xk [n]xk [n]H

10 MHz

∑
10 s

10 s

R̂k

x̃1(t)

x̃P(t)

RF
to

The noisy signals are moved to baseband, split into small
time-frequency bins, and correlated to each other to form short-term
correlation matrix estimates R̂k . These are stored.
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Example application: radio astronomy
Image formation

PSF

source

degrid
+FFT

−

(MH )

gridding
+IFFT

(M)

−
PSF

detect

Iclean(z)σqr = [Rij,k ]
zq

ID(z)

minor cyclemajor cycle

sky model

correlations

image
CLEANed

The observed correlations are stacked in a vector r (a few million
entries). To form the image, the observation matrix M has to be
inverted; this numerically tricky step is done iteratively using FFTs. In
the minor cycle, detected sources are subtracted from the data.
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Recap: Discrete-time signals - Ch.1

A discrete-time signal is an infinite sequence

x [n], n = · · · ,−1, 0, 1, 2, · · ·

We write
x =

[
· · · , x [−1], x [0] , x [1], x [2], · · ·

]
where the box denotes time 0.

We usually refer to the signal als x [n], but correct is simply x .

The square brackets denote that the indices n are integers
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Recap: Discrete-time signals - Ch.1
Basic signals

Impulse δ[n] = [· · · , 0, 1 , 0, 0, · · · ]
(does not have infinite amplitude!)

1

0 1 2

Step u[n] = [· · · , 0, 1 , 1, 1, · · · ]

Pulse of width N: p[n] = u[n]− u[n − N]

Complex exponential sequence:
x [n] = Aαnu[n], with A, α ∈ |C

1

0 1 2

· · ·

We can write a signal as a sum of (scaled) shifted impulses:

x [n] =
∞∑

k=−∞
x [k] δ[n − k]
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Energy and power

The energy of a signal x [n] is

Ex =
∞∑

n=−∞
|x [n]|2

The power is the average energy per sample:

Px = lim
N→∞

1

2N + 1

N∑
n=−N

|x [n]|2

`2 is the space of signals with finite energy. More in general:

`p =
{
x
∣∣ (
∑
|x [n]|p)1/p <∞

}
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Systems
A system T transforms a signal x into a signal y .

y = T {x}
We often write with abuse of notation y [n] = T {x [n]}
Examples

Time shift (delay):
y [n] = x [n − 1]

Reverse: y [n] = x [−n]

Moving-average (MA):
y [n] =
1
3 (x [n] + x [n − 1] + x [n − 2])

Summer (accumulator):

y [n] =
n∑

k=−∞
x [k] = x [n]+y [n−1]

z−1 x [n − 1]x [n]

x [n]

z−1

y [n]

y [n − 1]
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Systems

Some systems can be described by a Linear Constant Coefficient
Differential Equation:

y [n] + a1y [n − 1] + a2y [n − 2] = b0x [n] + b1x [n − 1] + b2x [n − 2]

The output signal can be computed via a recursion:

y [n] = −a1y [n − 1]− a2y [n − 2] + b0x [n] + b1x [n − 1] + b2x [n − 2]

1
2z−1

y [n]x [n]

z−1

y [n] = 1
4y [n − 1] + 1

2x [n] + 1
2x [n − 1]

1
4

1
2
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Systems

A system is linear if it satisfies superposition:

y1[n] = T {x1[n]}
y2[n] = T {x2[n]} ⇒ α1y1[n] +α2y2[n] = T {α1x1[n] +α2x2[n]}

A system is time-invariant if a delayed input leads to a delayed output:

y [n] = T {x [n]} ⇒ y [n − 1] = T {x [n − 1]}

T y [n − 1]⇒ x [n − 1]

T y [n]x [n]

In this course, we will mostly (but not always) consider LTI systems.
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Systems

A system is causal if the output at time n does not depend on future
values of the input.

A signal is bounded if it has a maximum amplitude xmax:

|x [n]| < xmax

The signal is in `∞.

A system is “bounded-input bounded output” (BIBO) stable if any
bounded input leads to a bounded output: T : `∞ → `∞.
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Recap: Convolution and the impulse response - Ch.2

The impulse response of a system is the response to an impulse at
time 0:

h[n] = T {δ[n]}

A finite impulse response (FIR) system has h[n] of finite length,
otherwise it is an infinite impulse response (IIR) system.

An LTI system is completely described by its impulse response.
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Convolution and the impulse response - Ch.2
Proof:

Recall x [n] =
∞∑

k=−∞
x [k]δ[n − k].

y [n] = T {x [n]} = T

{ ∞∑
k=−∞

x [k]δ[n − k]

}
=

∞∑
k=−∞

x [k]T {δ[n − k]}

=
∞∑

k=−∞
x [k]h[n − k]

This is the convolution sum. Notation: yn] = x [n] ∗ h[n].

h[n] y [n]x [n]
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Properties of the convolution
Convolution has similar properties as a multiplication (but acts on
sequences):

Commutative: x ∗ h = h ∗ x ⇒ cascade/series: h1 ∗ h2 = h2 ∗ h1

Associative: (x ∗ g) ∗ h = x ∗ (g ∗ h)

Distributive: x ∗ (h1 + h2) = x ∗ h1 + x ∗ h2 ⇒ parallel

x y x= yh1 + h2

h1

h2

h1 ∗ h2

h1 h2 yx h2 h1 yx=
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Properties of the convolution

The “unit element” of the convolution is δ[n]:

x [n] ∗ δ[n] = x [n]

A unit delay has impulse response δ[n − 1]:

x [n] ∗ δ[n − 1] = x [n − 1]
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Properties of the convolution

A causal system has h[n] = 0 for n < 0 (no response before the
impulse arrives).

A BIBO stable system has an impulse response that is absolutely
summable:

∞∑
−∞
|h[n]| < ∞

That is: h[n] ∈ `1.

An FIR system is always stable.
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Convolution as a matrix-vector product



...
y [−2]
y [−1]

y[0]

y [1]
y [2]

...


=



. . .

· · · h[0] 0
· · · h[1] h[0]

· · · h[2] h[1] h[0]

· · · h[3] h[2] h[1] h[0]
· · · h[4] h[3] h[2] h[1] h[0]

...
...

...
...

. . .





...
x [−2]
x [−1]

x [0]

x [1]
x [2]

...



linear ↔ matrix-vector;

causal ↔ lower triangular

time invariant ↔ constant along diagonals (“Toeplitz”)
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Computing the convolution

y [n] =
∞∑

k=−∞
x [k]h[n−k] = · · ·+x [0]h[n]+x [1]h[n−1]+x [2]h[n−2]+· · ·

1

x[1]h[n − 1] (k = 1)

h[n]

· · ·

h[n − 1]

1

210 210

x[k]
1

x[0]h[n]
1

x[2]h[n − 2] (k = 2)

⇒

y [n]

· · ·
−2−10 1 2 3

h[n − 2] ∑
0 1 2 3

1

0 1 2 3

1

0 1 2 3

1

· · ·

2

· · ·

10

210
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Convolution in 2D

In 2D convolution, each pixel is replaced by a weighted sum of its
neighbor pixels (the kernel specifies the weights)

Convolution kernel (“Sobel-x”): h[i , j ] =

 −1 0 1

−2 0 2
−1 0 1


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Recap: The z-transform - Ch. 4

The z-transform of a discrete-time signal x [n] is defined as

X (z) = Z(x [n]) =
∞∑

n=−∞
x [n]z−n

For example:

x = [· · · , 0, 1, 2, 3 , 4, 5, 0, · · · ] ⇒ X (z) = z2 + 2z1 + 3 + 4z−1 + 5z−2

x [n] = anu[n] ⇒ X (z) =
∞∑
n=0

anz−n =
1

1− az−1
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The z-transform

Properties:

ax [n] + by [n] ⇔ aX (z) + bY (z)
x [n − k] ⇔ z−kX (z)
anx [n] ⇔ X ( za ) often a = e jωc

x [−n] ⇔ X (z−1)
x [n] = δ[n] ⇔ X (z) = 1

1. introduction and recap 26 / 53



The z-transform
Convergence

Along with X (z), we should specify the region of convergence (ROC).

Different x [n] can give the same X (z) but with different ROC.

Generally we are only interested in ROCs that contain the unit circle
(where the Fourier transform will be defined).

r
1
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The z-transform
The transfer function

An LTI system is defined by its impulse response h[n]. Its z-transform
is

H(z) =
∑

h[n]z−n

It is called the transfer function.

The output of the system is the convolution sum y [n] = x [n] ∗ h[n].
Its z-transform is

Y (z) =
∑
n

{∑
k

x [k]h[n − k]

}
z−n

=
∑
k

x [k]

{∑
n

h[n − k]z−(n−k)

}
z−k

= X (z)H(z)
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The z-transform
Analyzing systems with feedback loops

G(z)

F (z) y [n]x [n]

Y (z) = F (z)
(
X (z) + G (z)Y (z)

)
Y (z)(1− F (z)G (z)) = F (z)X (z)

Y (z) =
F (z)

1− F (z)G (z)
X (z) ⇔ H(z) =

direct path

1− loop

Feedback loops result in rational transfer functions

But: the derivation is also valid if F and/or G are rational transfer
functions themselves!
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The z-transform
Rational transfer function

For the LCCDE

N∑
k=0

aky [n − k] =
M∑
k=0

bkx [n − k],

we find after the z-transform

N∑
k=0

akz
−kY (z) =

M∑
k=0

bkz
−kX (z)

⇔ H(z) =
Y (z)

X (z)
=

∑M
k=0 bkz

−k∑N
k=0 akz

−k
=:

B(z)

A(z)

Thus, the transfer function is a rational function.
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The z-transform
Poles and zeros

Consider the rational transfer function

H(z) =
B(z)

A(z)

The poles of H(z) are the solutions of A(z) = 0, the zeros are the
solutions of B(z) = 0.

Some of them could cancel each other.

We also have to consider poles and zeros at z = 0 and z =∞.

If we do that, the number of poles is equal to the number of zeros.

By definition, the ROC cannot contain any poles.
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The z-transform

Causal system For a causal LTI system, we have h[n] = 0, n < 0.

H(z) =
∞∑
n=0

h[n]z−n = h[0] + h[1]z−1 + · · ·

Consequently, an LTI system is causal iff the ROC includes the
outsize of a circle, including z →∞

Stable system A system is BIBO stable iff
∞∑

n=−∞
|h[n]| <∞.

Note that

|H(z)| ≤
∑
|h[n]z−n| =

∑
|h[n]| |z−n|

Therefore, |H(e jω)| <∞: the unit circle is in the ROC.

A causal stable system has all poles within the unit circle.
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Recap: The discrete-time Fourier Transform - Ch. 3
Definition

X (ω) = F{x [n]} :=
∞∑

n=−∞
x [n]e−jωn

X (ω + 2π) = X (ω): periodic in ω, period 2π:

It suffices to consider the interval ω ∈ [−π, π] (the fundamental
interval)

X (ω) = |X (ω)|e jφ(ω),

where |X (ω)|: amplitude spectrum, φ(ω): phase spectrum
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The Discrete-Time Fourier Transform
Relation to the z-transform

Given X (z), the DTFT is obtained by taking z = e jω

It is necessary that |z | = 1 is in the ROC.

Many books write the DTFT as X (e jω).

Consequently,

Y (ω) = H(ω)X (ω)

H(ω) =
∑

h[n]e−jωn
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The Discrete-Time Fourier Transform
Inverse DTFT

x [n] =
1

2π

∫ π

−π
X (ω) e jωndω =

∫ 1/2

−1/2
X (f )e j2πfndf (ω = 2πf )

Energy and Parseval

Ex =
∞∑

n=−∞
|x [n]|2 =

1

2π

∫ π

−π
|X (ω)|2dω

Sx(ω) := |X (ω)|2 is called the energy spectral density
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The Discrete-Time Fourier Transform
Real-valued signals

If x [n] = x∗[n], then

X ∗(ω) = X (−ω) = X (z−1)
∣∣
z=e jω

and hence we have symmetry relations:

|X (−ω)| = |X (ω)| , φ(−ω) = −φ(ω)

In this case, it suffices to plot the spectrum on 0 ≤ ω ≤ π
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The Discrete-Time Fourier Transform
Properties

ax [n] + by [n] ⇔ aX (ω) + bY (ω)
x [n − k] ⇔ e−jωkX (ω)
x [−n] ⇔ X (−ω)
x∗[n] ⇔ X ∗(−ω)

(x1 ∗ x2)[n] ⇔ X1(ω)X2(ω)
x [n]y [n] ⇔ (X ∗ Y )(ω) = 1

2π

∫ π
−π X (λ)Y (ω − λ)dλ

e jω0nx [n] ⇔ X (ω − ω0)
x [n] cosω0n ⇔ 1

2 (X (ω − ω0) + X (ω + ω0))
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The Discrete-Time Fourier Transform
Example

Consider
x [n] = anu[n] , −1 < a < 1

We find

X (ω) =
∞∑
n=0

ane−jωn =
∞∑
n=0

(ae−jω)n =
1

1− ae−jω

Sx(ω) = |X (ω)|2 = X (ω)X ∗(ω) =
1

(1− ae−jω)(1− ae jω)

=
1

1− 2a cosω + a2
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The Discrete-Time Fourier Transform
Example

0 2 4 6 8 10
0

0.5

1

n

x[n] = 0.5
n
 u[n]

−pi −pi/2 0 pi/2 pi
0

2

4

ω

S
xx

(ω) = |X(ω)|
2

0 2 4 6 8 10
−1

0

1

n

x[n] = (−0.5)
n
 u[n]

−pi −pi/2 0 pi/2 pi
0

2

4

ω

S
xx

(ω) = |X(ω)|
2
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The Discrete-time Fourier Transform
Example (2)

Consider

x [n] =

{
A, 0 ≤ n ≤ L− 1
0, elders

We find

X (ω) =
L−1∑
n=0

Ae−jωn = A
1− e−jωL

1− e−jω
= Ae−j(ω/2)(L−1) sin(ωL/2)

sin(ω/2)

This function is called the Dirichlet kernel: a “periodic sinc”
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The Discrete-time Fourier Transform
Example (2)

|X (ω)| = |A| |sin(ωL/2)

sin(ω/2)
| , X (0) = |A|L

−pi −pi/2 0 pi/2 pi
0

5

10

ω

|X(ω)|

−pi −pi/2 0 pi/2 pi
−pi

−pi/2

0

pi/2

pi

ω

φ(ω)

(L = 8)

zero crossings for
ω = ±2π

L k (k 6= 0)

phase slope ↔ delay
phase jumps (π) ↔ sign changes
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Phasors
Consider a rational transfer function H(z) =

z − b

z − a
.

How to draw |H(ω)| and φ(ω)?

b

z = e jω

z − b

a

z − aπ
ω = 0−π

|H(ω)| =
|z − b|
|z − a|

φ(ω) = ∠(z − b)− ∠(z − a) mod 2π

−pi −pi/2 0 pi/2 pi
0

2

4

ω

|H(ω)|

−pi −pi/2 0 pi/2 pi
−pi

0

pi

ω

φ(ω)

a=0.7
b=0

−pi −pi/2 0 pi/2 pi
0

10

20

ω

|H(ω)|

−pi −pi/2 0 pi/2 pi
−pi

0

pi

ω

φ(ω)

a=0.9
b=−0.8
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Phasors
Lowpass

−π ω = 0
π

−pi −pi/2 0 pi/2 pi
0

50

100

ω

|H(ω)|

−pi −pi/2 0 pi/2 pi
−pi

0

pi

ω

φ(ω)

a=0.9 +− j 0.05

b=0, 0

Highpass

−π ω = 0
π

−pi −pi/2 0 pi/2 pi
0

50

100

ω

|H(ω)|

−pi −pi/2 0 pi/2 pi
−pi

0

pi

ω

φ(ω)

a=−0.9 +− j 0.05

b=0, 0
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Phasors
Bandpass

ω0

−ω0

π
−π ω = 0 −pi −pi/2 0 pi/2 pi

0

10

20

ω

|H(ω)|

−pi −pi/2 0 pi/2 pi
−pi

0

pi

ω

φ(ω)

a=0.6 +− j 0.75

b=0, 0

ω0

−ω0

Notch

π
−π ω = 0 −pi −pi/2 0 pi/2 pi

0

1

2

ω

|H(ω)|

−pi −pi/2 0 pi/2 pi
−pi

0

pi

ω

φ(ω)

a=0.588 +− j 0.784

b=0.6 +− j 0.8
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Linear phase filters

An LTI system has linear phase if its frequency response can be written
as

H(ω) = A(ω)e−j(αω−β)

in which A(ω) and α, β are real-valued.

We have A(ω) = ±|H(ω)|

e−jαω is interpreted as the response of a delay, z−α.

If |H(ω)| is flat in its passband (ideal filter), then it does not distort
the shape of an input signal in its passband (e.g., a pulse)

More generally, consider the group delay τg = − dφ(ω)

dω
For a bandpass signal, this specifies the delay of its envelope.
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Linear phase filters
A filter can have linear phase only if it is FIR with order M, of the form

h[n] = h[M − n] (symmetric)

or
h[n] = −h[M − n] (antisymmetric)

Location of zeros:

From h[n] = εh[M − n], ε = ±1, it follows
H(z) = εz−MH(z−1).

If z0 is a zero, then also 1/z0 is a zero.

If h[n] is also real-valued, then also z∗0 and
1/z∗0 are zeros.

z1

z0
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Allpass filters - Ch. 5.7 [New]

H(z) is an allpass filter if |H(e jω)| = 1 for all ω.

Example: H(z) = z−1.

Every rational allpass function with real-valued coefficients has the
form

H(z) =
aM + aM−1z

−1 + · · ·+ a1z
−M+1 + z−M

1 + a1z−1 + · · ·+ aM−1z−M+1 + aMz−M
=

z−MA(z−1)

A(z)

Hence, the numerator polynomial is the reverse of the denominator.
(For complex coefficients, also a conjugation is needed.)

Proof:

|H(e jω)| =
|A(e−jω)|
|A(e jω)|

=
|A∗(e jω)|
|A(e jω)|

= 1
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Allpass filter

If z0 is a zero of H(z), then 1/z0 is a pole.
Hence, complex poles and zeros come in
groups of 4: z∗0 is also a zero, and 1/z∗0 is a
pole.

z1

z0

For a stable causal allpass filter, all zeros are outside the unit circle.
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Minimum phase filters

H(z) is a minimum phase filter if all poles and zeros are within the unit
circle.

Hence, also H−1(z) is causally stable.

In contrast, an allpass filter has all zeros outside the unit circle; its
inverse is causally unstable but anti-causally stable.
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Minimum phase filters
A causal stable transfer function can be factorized as

H(z) = Hmf (z)Hap(z), with Hmf (z) minimum phase, Hap(z) allpass

The algorithm for this is:

Assign all poles of H(z) to Hmf (z).

Assign all zeros of H(z) located within the unit circle to Hmf (z), and
those outside the unit circle to Hap(z).

The zeros of Hap(z) also specify the poles of Hap(z).

These in turn are assigned as zeros to Hmf (z)

Example:

H(z) =
1− 3z−1

1− 0.5z−1
=

1− 1/3 z−1

1− 0.5z−1
· 1− 3z−1

1− 1/3 z−1
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To do:

Refresh your memory of EE2S1 Signals & Systems: go over Ch. 1–5

Study new material:

• 5.7 Allpass functions

Try to make exercise ...

Next lecture, we revisit sampling (Ch. 6).

1. introduction and recap 51 / 53


	intro
	1 digital signals
	2 convolution and the impulse response
	2.7 convolution of long sequences
	2.7 convolution of long sequences
	4 z-transform
	3 DTFT
	5.7 allpass filters

