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Block 1: Stochastic Processes (13:30-15:00)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:55–15:10

This block consists of three questions (25 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (9 points)

X and Y have the joint PDF

fX,Y (x, y) =

{

c (y − x) for 0 ≤ x ≤ y ≤ 1

0 otherwise.

(a) Find the constant c.

(b) What is fX(x) and fY (y).

(c) Are X and Y independent?

(d) What is fX|Y (x|y).

(e) What is the blind estimate, x̂B .

(f) What is x̂M (y), the MMSE estimate of X given Y = y.

(g) What is x̂MAP(y), the maximum a posteriori estimator for X given Y = y.

Solution

(a) 1.5 pnt

∫∫

fX,Y (x, y) dxdy =

∫ 1

0

(
∫ y

0
c(y − x)dx

)

dy

= c

∫ 1

0

[

xy − 1

2
x2)dx

]y

0

dy

= c

∫ 1

0

1

2
y2dy

= c

∫ 1

0

1

2
y2dy

=
c

6
= 1 ,
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hence c = 6.

(b) 2 pnt For 0 ≤ x ≤ 1:

fX(x) =

∫

fX,Y (x, y) dy

=

∫ 1

x
c(y − x) dy

= c

[

1

2
y2 − xy

]1

x

= 3x2 − 6x+ 3 .

Hence,

fX(x) =

{

3x2 − 6x+ 3 0 ≤ x ≤ 1

0 otherwise.

For 0 ≤ y ≤ 1:

fY (y) =

∫

fX,Y (x, y)dx =

∫ y

0
c(y − x)dx =

[

6(yx− 1

2
x2)

]y

0

= 3y2

Hence,

fY (y) =

{

3y2 0 ≤ y ≤ 1

0 otherwise.

(c) 1 pnt Not independent, because fX,Y (x, y) 6= fX(x) fY (y).

(d) 1 pnt

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=







2

y
− 2

y2
x 0 ≤ x ≤ y

0 otherwise.

(e) 1 pnt

x̂B = E[X] =

∫ 1

0
x fX(x) dx

=

∫ 1

0
(3x3 − 6x2 + 3x) dx

=

[

3

4
x4 − 2x3 +

3

2
x2

]1

0

=
1

4

(f) 1.5 pnt
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x̂MSE(y) = E[X|y] =
∫

x fX|Y (x|y) dx

=

∫ y

0

(

2

y
x− 2

y2
x2

)

dx

=

[

x2

y
− 2

3

x3

y2

]y

0

= y − 2

3
y =

1

3
y

(g) 1 pnt

x̂MAP(Y = y) = argmax
x

fX|Y (x|y)

= argmax
x; 0≤x≤y

2

y
− 2

y2
x

= 0

since for any given y, the function to be maximized is a line with a negative slope.

Question 2 (7 points)

It is known that if U is standard normal distributed then Z = U2 is Chi-square distributed

(with 1 degree of freedom), and that its moment generating function (MGF) is given by

φZ(s) =
1√

1− 2s
, ROC: s < 1

2 .

Let X and Y be independent standard Gaussian variables (i.e., mean 0, variance 1). In this

question, we aim to find the MGF of their product, V = X Y .

(a) Compute the mean and the variance of X + Y and of X − Y .

(b) Derive the PDF of X + Y and of X − Y .

(c) Show that X + Y is independent of X − Y .

(d) Derive that the MGF of W = (X + Y )2 is

φW (s) =
1√

1− 4s
.

(e) Derive the MGF of the product V = X Y .

Hint: First write X Y = 1
4 (X + Y )2 − 1

4 (X − Y )2.
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Solution

(a) 2 pnt E[X + Y ] = E[X] + E[Y ] = 0, similarly E[X − Y ] = 0. Due to independence,

var[X + Y ] = var[X] + var[Y ] = 2 ,

and similarly var[X − Y ] = 2.

(b) 1 pnt A linear combination of Gaussians is again Gaussian. Hence both are Gaussian with zero

mean and variance 2, with the same PDF

f(u) =
1

2
√
π
e−u2/4 .

(c) 1 pnt Compute the cross-correlation

E[(X + Y )(X − Y )] = E[X2 − Y 2] = E[X2]− E[Y 2] = 0 .

Thus, X +Y is uncorrelated with X −Y . But for Gaussian variables, uncorrelated means

independent (viz. Theorem 5.20).

(d) 1.5 pnt X + Y is a Gaussian with zero mean and variance 2. Thus, we can write X + Y =
√
2U ,

with U a standard normal distributed variable, and W = (X + Y )2 = 2U2 is a scaled

Chi-squared variable.

The MGF of Z = U2 is given. The scaling rules are in Theorem 9.5, resulting in

φW (s) = φ(X+Y )2(s) = φZ(2s) =
1√

1− 4s

(e) 1.5 pnt The scaling rules for 1
4(X + Y )2 result in

φ1/4 (X+Y )2(s) = φW (14s) =
1√
1−s

The MGF of (X −Y )2 is the same as that of (X +Y )2. But for the MGF of −1
4(X −Y )2,

the scaling by −1
4 gives

φ−1/4 (X−Y )2(s) =
1√
1 + s

The MGF of a sum results in a product of the MGFs, hence

φXY (s) =
1√
1− s

1√
1 + s

=
1√

1− s2
.

Question 3 (9 points)

Consider the following system:

1/2
z
−1

Xn Yn
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The input signal is an iid Gaussian random process Xn, with mean µX = 2 and variance σ2
X = 3.

The output Yn satisfies the recursion Yn = 1
2Yn−1 +Xn.

(a) Determine the autocorrelation sequence of the input, RX [k], as well as its power spectral

density, SX(φ).

(b) Compute E[Yn].

The autocovariance sequence of the output is

CY [k] =
4

3

(

1

2

)|k|
σ2
X .

(c) Compute the autocorrelation sequence RY [k] of the output.

(d) What is the average output power?

(e) Determine the power spectral density of the output, SY (φ).

(f) Compute P[Yn > 8].

Note: See Table 4.1 or 4.2 (page 129/130) for Φ(z) or Q(z).

See Table 3 (Suppl. page 38) for Discrete-Time Fourier Transform pairs.

Solution

(a) 2 pnt The input is iid (hence WSS), and

RX [k] = σ2
Xδ[k] + µ2

X = 3δ[k] + 4 .

The input power spectral density is the DTFT of RX [k], i.e.,

SX(φ) = σ2
X + µ2

Xδ(φ) = 3 + 4δ(φ) .

(b) 2 pnt Using the recursion gives E[Yn] =
1
2E[Yn−1] + E[Xn]. Since Yn is WSS (output of an LTI

filter with WSS process as input), E[Yn] = E[Yn−1] = µY , and we find

µY =
1

2
µY + µX ⇒ µY = 2µX = 4 .

Alternatively, use µY = µX
∑

n h[n], with h[n] = (12)
n. Then

∑

n h[n] =
1

1−1/2 = 2.

(c) 1 pnt RY [k] = CY [k] + µ2
Y = 4

(

1
2

)|k|
+ 16.

(d) 1 pnt RY [0] = 20.

(e) 1.5 pnt Take the DTFT of RY [k]. Using Table 3,

SY (φ) =
4

3

1− 1
4

1 + 1
4 − cos(2πφ)

σ2
X + µ2

Y δ(φ) =
3

5
4 − cos(2πφ)

+ 16δ(φ)
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Alternatively, use

H(z) =
1

1− 1
2z

−1

and evaluate SY (φ) = |H(ej2πφ)|2SX(φ):

SY (φ) =
1

1− 1
2e

−j2πφ

1

1− 1
2e

j2πφ
(3 + 4δ(φ))

=
1

1 + 1
4 − 1

2e
−j2πφ − 1

2e
j2πφ

(3 + 4δ(φ))

=
3

5
4 − cos(2πφ)

+ 16δ(φ)

(f) 1.5 pnt We have µY = 4 and std(Yn) = 2.

P[Yn > 8] = P

[

Yn − 4

2
>

8− 4

2

]

= Q(2) = 1− 0.97725 = 0.0228 .
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Block 2 (15:25-16:55)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 16:50–17:05

This block consists of three questions (25 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Question 4 (9 points)

Let us consider the sampling of an amateur radio signal broadcast in the band 3.5-4.0 MHz!

(1 p) (a) Using the graphic in Figure 1 (Figure 6.4.3 from the book), determine the ranges

of all possible sampling frequencies that won’t result in destructive aliasing! Report your

answer by indicating the ranges on the graphic! (You can do this on your computer, or

you can sketch this graphic by hand on your answer sheet or use a printed copy of this

figure if you have one)

Figure 1

(2 p) (b) Determine the value of a possible sampling frequency which will convert the signal

down to baseband, i.e. to 0-0.5 MHz!)

Let us assume that our digital radio receiver samples the radio signal at 1.1025 MHz. After

digital demodulation of the baseband signal, we now have a digital audiosignal with a spectrum

shown on Figure 2. (Note: there is also noise over the whole spectrum, but this noise is not

shown in the figure, only the desired part of the signal.) We want to write this signal onto a CD

with sampling rate 44.1 kHz. In order to do that, we first have to downsample the audio signal.

(2 p) (c) Sketch the block diagram of a two-stage downsampler for this task and explain the

purpose of each block!
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40Hz                               11kHz F
0.02π ⍵

|X(F)|

Figure 2

(1 p) (d) What are the decimation factors of each phase in this downsampler?

(2 p) (e) Give the specification of the first filter in your system, in terms of pass/stop/transition

band and explain your choice!

(1 p) (f) What is the advantage of this solution over single-stage downsampling?

Solution

(a) FH = 4MHz and B = 0.5MHz, therefore, FH
B = 8 .Accordingly, the possible ranges are

indicated in red in Fig 3 (only the white areas below the red line)

Figure 3

(b) In order to convert to baseband, we need to ’map’ 3.5MHz to 0Mhz. Using the formula that

relates the digital spectrum to the analog spectrum: 0 = 3.5− k · Fs. Taking for example

k=2, this gives us Fs = 3.5/2 = 1.75MHz. This corresponds to FS/B = 1.75/0.5 = 3.5,

2



which is allowed according to Fig. 3. (it can also be verified by sketching the resulting

digital spectrum.) One could choose a different k as well, leading to a different sampling

rate.

(c) The block diagram is shown in Fig. 4. It has two decimators, and an anti-aliasing filter

before each.

Figure 4

(d) We need a total of 1102.5/44.1 = 25 factor downsampling. The individual decimators

must have an integer factor, so, this is possible to achieve with M1 = M2 = 5.

(e) After the first downsampling stage, the digital signal has a sampling rate F1 = 220.5kHz,

therefore its spectrum will be periodic with copies every 220.5kHz. In order to prevent

aliasing, we need a filter with stopband at 220.5 - 11 kHz (corresponding to the lowest

frequency of the first copy of the negative part of the original spectrum). Therefore, the

filter specifications are:

• passband: 0− 11kHz

• transition band: 11− (220.5− 11)kHz

• stopband: above 220.5kHz.

(1 p) (f) It will allow the use of lower order filters.

Question 5 (8 points)

Consider a digital signal y[n] that is the result of filtering the sequence x[n] = [ 1 , 0, 2, 0,−1, 0, 3, 0]

using a digital filter with impulse response h[n] = [ 3 , 2, 1, 2].

(2 p) (a) Compute the values of y[n] in the time domain! Note: Indicate each step of your

computations. Without clear intermediate steps, the end result will not be accepted!

(2 p) (b) How can you calculate y[n] in the frequency domain? Write down the steps of the

method (no need to make calculations)

(2 p) (c) Determine the 8-point DFT of x[n]!

(2 p)(d) Which of the above approaches (time domain or frequency domain) is better in terms

of computational complexity (assuming that the DFT matrices are known) for a sequence

and a filter of this length, in general?
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Solution

(a) According to the formula,

y[n] =
M−1∑
k=0

h(k)x(n− k), therefore

h[0]x[n] =
[
3 0 6 0 −3 0 9 0

]
h[1]x[n− 1] =

[
0 2 0 4 0 −2 0 6

]
h[2]x[n− 2] =

[
0 0 1 0 2 0 −1 0

]
h[3]x[n− 3] =

[
0 0 0 2 0 4 0 −2

]
,such that

y[n] =
[
3 2 7 6 −1 2 8 4

]

(b) In the frequency domain, we first need to zero-pad the signals, take their DFT, multiply

them and then take the inverse DFT of the result.

(c) We need to multiply the sequence x[n] with the 8-point DFT matrix. However, notice

that every second sample of x[n] is 0. Therefore, we can simplify the computation to the

following matrix multiplication (taking only every second column of th DFT matrix and

only the even samples of the sequence:

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i
1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i


[
1 2 −1 3

]T
=

[
5 2 + i −5 2− i 5 2 + i −5 2− i

]T

d In the time domain we need M2 multiplications and M(M − 1) additions (according to

the equation in part (a)), with M=4+8-1=11. That is, 121+110. (Note: in part (a)

we omitted a lot of zeros, so in fact we made even less calculations) In the frequency

domain, we need to take 11-point DFTs of both sequences (matrix multiplication), which

is 2 times M2 multiplications and M(M − 1) additions. We need M multiplications to

take the product of the DFTs, and finally M2 multiplications and M(M − 1) additions

for the inverse DFT. Therefore, time domain computation for this filtering task is less

computationally intensive.

Question 6 (8 points)

Given a multirate conversion system with a block scheme shown in Figure 5 with L=2 and M=5.

The sampling rate at the input is 100Hz. The amplitude spectrum |X(ω)| of the input signal

x[n] is depicted in Fig. 6.
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Figure 5

Figure 6

2p (a) Give a formula for Y1(ω) in terms of X(ω) and draw a graphic for the amplitude spectrum

|Y1(ω)|!

Let us consider the implementation of the conversion system shown in Fig. 7.

Figure 7

2p (b) What is the role of the filters Pi(z) and how are they related to H(z)?

1p (c) At which rate do the filters operate in this implementation?

3p (d) Draw an alternative, more efficient implementation of the multirate conversion system

(in terms of the rate at which the filters operate!) At which rate do the filters operate

now?

Solution

(a) Y (ω) = 2X(ω) The amplitude spectrum is shown below:

(b) Pi(z) are the polyphase representation of the filter H(z), that is H(z) = P0(z
2)+z−1P1(z

2).

(c) In the given implementation the filter operates at the same rate as the input, i.e. 100Hz.

(d) An alternative implementation is shown below, where the filters operate at 40Hz. This is

obtained from the original block diagram by replacing H(z) with a 5-component polyphase
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Figure 8

filter and exchanging the order of the filter and the downsampler. One could also work

further on the implementation shown on Figure 7, leading to an even more efficient (but

more complicated) circuit.

Figure 9
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