#### EE2S31 Signal Processing – Stochastic Processes Lecture 9: Exercises for Part 2

Alle-Jan van der Veen

15 June 2022



#### Exam 27 July 2021, Question 3

Consider the following discrete-time system:



The input signal is an iid Gaussian random process  $X_n$ , with mean  $\mu_X = 2$  and variance  $\sigma_X^2 = 3$ .

The output  $Y_n$  satisfies the recursion  $Y_n = \frac{1}{2}Y_{n-1} + X_n$ .

(a) Determine the autocorrelation sequence of the input,  $R_X[k]$ , as well as its power spectral density,  $S_X(\phi)$ .

(b) Compute  $E[Y_n]$ .

#### Exam 27 July 2021 Solution

(a) The input is iid (hence WSS), and

$$R_X[k] = \sigma_X^2 \delta[k] + \mu_X^2 = 3\delta[k] + 4.$$

The input power spectral density is the DTFT of  $R_X[k]$ , i.e.,

$$S_X(\phi) = \sigma_X^2 + \mu_X^2 \delta(\phi) = 3 + 4\delta(\phi).$$

(b) Using the recursion gives  $E[Y_n] = \frac{1}{2}E[Y_{n-1}] + E[X_n]$ . Since  $Y_n$  is WSS (output of an LTI filter with WSS process as input),  $E[Y_n] = E[Y_{n-1}] = \mu_Y$ , and we find

$$\mu_Y = \frac{1}{2}\mu_Y + \mu_X \qquad \Rightarrow \qquad \mu_Y = 2\mu_X = 4.$$

Alternatively, use  $\mu_Y = \mu_X \sum_n h[n]$ , with  $h[n] = (\frac{1}{2})^n u[n]$ . Then  $\sum_n h[n] = \frac{1}{1-1/2} = 2$ , and  $\mu_Y = 4$ .

The autocovariance sequence of the output is

$$C_{\mathbf{Y}}[k] = \frac{4}{3} \left(\frac{1}{2}\right)^{|k|} \sigma_X^2 \,.$$

- (c) Compute the autocorrelation sequence  $R_{Y}[k]$  of the output.
- (d) What is the average output power?
- (e) Determine the power spectral density of the output,  $S_Y(\phi)$ .

*Note:* See Table 3 (Suppl. page 38) for Discrete-Time Fourier Transform pairs.



# Exam 27 July 2021, Question 3 Solution

(c)  $R_{Y}[k] = C_{Y}[k] + \mu_{Y}^{2} = 4\left(\frac{1}{2}\right)^{|k|} + 16.$ (d)  $R_{Y}[0] = 20$ . (e) Take the DTFT of  $R_{Y}[k]$ . Using Table 3 (Suppl. page 38),  $S_{Y}(\phi) = \frac{4}{3} \frac{1 - \frac{1}{4}}{1 + \frac{1}{4} - \cos(2\pi\phi)} \sigma_{X}^{2} + \mu_{Y}^{2}\delta(\phi) = \frac{3}{\frac{5}{4} - \cos(2\pi\phi)} + 16\delta(\phi)$ Alternatively, use  $H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$  and evaluate  $S_{\mathbf{Y}}(\phi) = |H(e^{j2\pi\phi})|^2 S_{\mathbf{X}}(\phi):$  $S_{Y}(\phi) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi\phi}} \frac{1}{1 - \frac{1}{2}e^{j2\pi\phi}} (3 + 4\delta(\phi))$  $= \frac{1}{1 + \frac{1}{4} - \frac{1}{2}e^{-j2\pi\phi} - \frac{1}{2}e^{j2\pi\phi}}(3 + 4\delta(\phi))$  $= \frac{3}{\frac{5}{4} - \cos(2\pi\phi)} + 16\delta(\phi)$ 



#### Exam July 1, 2021, Question 1

Let  $X(t) = A \cos(\Omega_0 t)$  be a random process, where  $A \in \{-1, +1\}$  with equal probabilities, and  $\Omega_0$  is a given frequency.

- (a) Draw two different realizations of X(t).
- (b) What type of random process is X(t)? [Think of continuous value/discrete value; continuous-time/discrete time.]
- (c) Compute the probability mass function (PMF)  $P_{X(t)}(x)$ .

#### Exam July 1, 2021, Question 1

Let  $X(t) = A \cos(\Omega_0 t)$  be a random process, where  $A \in \{-1, +1\}$  with equal probabilities, and  $\Omega_0$  is a given frequency.

- (a) Draw two different realizations of X(t).
- (b) What type of random process is X(t)? [Think of continuous value/discrete value; continuous-time/discrete time.]
- (c) Compute the probability mass function (PMF)  $P_{X(t)}(x)$ .

(a) (There are only 2 possibilities, one for A = 1, the other for A = -1)
(b) This is a discrete value continuous-time random process. (Therefore, X(t) is described by a PMF.)
(c)

$$P_{X(t)}(x) = \begin{cases} \frac{1}{2} & x = \cos(\Omega_0 t) \\ \frac{1}{2} & x = -\cos(\Omega_0 t) \\ 0 & \text{otherwise} \end{cases}$$



```
(d) Compute E[X(t)].
```

```
(e) Compute R_X(t,\tau).
```

```
(f) Is X(t) stationary? Is it WSS?
```



(d) Compute E[X(t)].
(e) Compute R<sub>X</sub>(t, τ).
(f) Is X(t) stationary? Is it WSS?

(d)  $E[X(t)] = E[A] \cos(\Omega_0 t) = 0.$ (e) Note that  $E[A^2] = 1$ . Then

$$R_X(t,\tau) = \mathsf{E}[A\cos(\Omega_0 t)A\cos(\Omega_0(t+\tau))]$$
  
=  $\mathsf{E}[A^2]\cos(\Omega_0 t)\cos(\Omega_0(t+\tau))$   
=  $\frac{1}{2}\cos(\Omega_0 \tau) + \frac{1}{2}\cos(2\Omega_0 t + \Omega_0 \tau)$ 

(f) Not stationary because  $P_{X(t)}(x) \neq P_{X(t+\tau)}(x)$ . Not WSS because  $R_X(t,\tau)$  depends on t.

#### Exam July 1, 2021, Question 2

Let  $X_n$  be an independent identically distributed (iid) random sequence with mean 2 and variance 3, and consider  $Y_n = \frac{1}{2}(X_n + X_{n-1})$ .

(a) Compute E[Y<sub>n</sub>].
(b) Compute var[Y<sub>n</sub>].

#### Exam July 1, 2021, Question 2

Let  $X_n$  be an independent identically distributed (iid) random sequence with mean 2 and variance 3, and consider  $Y_n = \frac{1}{2}(X_n + X_{n-1})$ .

- (a) Compute E[Y<sub>n</sub>].
  (b) Compute var[Y<sub>n</sub>].
- (a) Use independence of  $X_n$  and  $X_{n-1}$ :  $E[Y_n] = \frac{1}{2}(E[X_n] + E[X_{n-1}) = 2.$
- (b) Use independence of  $X_n$  and  $X_{n-1}$ :  $\operatorname{var}[Y_n] = \frac{1}{4}(\operatorname{var}(X_n) + \operatorname{var}(X_{n-1})) = \frac{3}{2}.$



(c) Compute  $R_X[k]$ .



(c) Compute  $R_X[k]$ .

(c) The extended derivation is, using iid,

$$R_{X}[k] = E[X_{n}X_{n+k}] = \begin{cases} E[X_{n}^{2}] & k = 0\\ E[X_{n}]E[X_{n+k}] & k \neq 0 \end{cases}$$
$$= \begin{cases} \mu_{X}^{2} + \operatorname{var}[X_{n}] & k = 0\\ \mu_{X}^{2} & k \neq 0 \end{cases}$$
$$= \begin{cases} 4+3 \quad k = 0\\ 4 \quad k \neq 0 \end{cases}$$

Write this in one expression as  $R_X[k] = 4 + 3\delta[k]$ .



(d) Compute  $R_{XY}[n, k]$  and  $R_Y[n, k]$ .



(d) Compute  $R_{XY}[n, k]$  and  $R_Y[n, k]$ .

(d)  $R_{XY}[n,k] = E[X_n Y_{n+k}] = \frac{1}{2} E[X_n (X_{n+k} + X_{n+k-1})]$  $= \frac{1}{2}(R_X[k] + R_X[k-1]) = 4 + \frac{3}{2}\delta[k] + \frac{3}{2}\delta[k-1]$  $R_{Y}[n,k] = E[Y_{n}Y_{n+k}] = \frac{1}{4}E[(X_{n}+X_{n-1})(X_{n+k}+X_{n+k-1})]$  $= \frac{1}{4} (\mathsf{E}[X_n X_{n+k}] + \mathsf{E}[X_n X_{n+k-1}]]$  $+ E[X_{n-1}X_{n+k}] + E[X_{n-1}X_{n+k-1}])$  $= \frac{1}{4}(2R_X[k] + R_X[k-1] + R_X[k+1])$  $= 4 + \frac{3}{2}\delta[k] + \frac{3}{4}\delta[k-1] + \frac{3}{4}\delta[k+1]$ 

Alternatively, use the convolution equations.

**ŤU**Delft

- (e) Compute the average power of  $Y_n$ .
- (f) Is  $Y_n$  iid? Is it WSS? Is it jointly WSS with  $X_n$ ?
- (g) If  $X_n$  is Gaussian, is  $Y_n$  Gaussian?



- (e) Compute the average power of  $Y_n$ .
- (f) Is  $Y_n$  iid? Is it WSS? Is it jointly WSS with  $X_n$ ?
- (g) If  $X_n$  is Gaussian, is  $Y_n$  Gaussian?
- (e)  $E[Y_n^2] = R_Y[0] = 4 + \frac{3}{2} = 5.5$
- (f) Not iid because  $Y_n$  is not independent of  $Y_{n-1}$  (they both depend on  $X_{n-1}$ ). This is also seen from  $R_Y[k]$  or, more clearly, from  $C_Y[k] = R_Y[k] - \mu_Y^2 = \frac{3}{2}\delta[k] + \frac{3}{4}\delta[k-1] + \frac{3}{4}\delta[k+1]$ : for an iid process we would only have a term with  $\delta[k]$ .

WSS because  $E[Y_n]$  does not depend on *n* and  $R_Y[n, k]$  does not depend on *n*.

Jointly WSS because both  $X_n$  and  $Y_n$  are WSS, and  $R_{XY}[n, k]$  does not depend on n.

(g) Yes,  $Y_n$  is also Gaussian distributed, because it is a linear combination of Gaussian variables.

#### Exam July 1, 2021, Question 3

The power spectral density  $S_X(f)$  of a random process X(t) is given by

$$S_X(f) = egin{cases} 2 & |f \pm f_0| \leq rac{B}{2} \\ 0 & ext{otherwise} \end{cases}$$



- (a) Compute the average power of X(t).
- (b) Determine the autocorrelation function R<sub>X</sub>(τ).
   *Hint:* You may need to use Supplement table 1, 2, p. 29/30.

### Exam July 1, 2021, Question 3 Solution

(a) The average power is the area in the figure:

$$\mathsf{E}[X^2(t)] = \mathsf{R}_X(0) = \int_{-\infty}^{\infty} S_X(f) \mathrm{d}f = 4B$$

(b) First recognize that  $S_X(f)$  is the convolution of a baseband lowpass filter with two delta pulses in frequency:

$$S_X(f) = S_B(f) * C(f)$$





#### Exam July 1, 2021, Question 3 Solution (continued)

(b) The autocorrelation function  $R_X(\tau)$  is the inverse Fourier transform of  $S_X(f)$ , hence (see table)

 $R_X(\tau) = R_B(\tau) c(\tau)$ 

Next use the table:

$$\operatorname{sinc}(2W\tau) \quad \leftrightarrow \quad \frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$$
$$\operatorname{cos}(2\pi f_0\tau) \quad \leftrightarrow \quad \frac{1}{2}\left(\delta(f-f_0)+\delta(f+f_0)\right)$$
$$\operatorname{that} B = 2W \quad \text{Altogether this gives}$$

Note that B = 2W. Altogether, this gives

 $R_X(\tau) = 4B\operatorname{sinc}(B\tau)\,\cos(2\pi f_0\tau)$ 

(You can check the scale by evaluating  $R_X(0) = 4B$ , and compare to question (a).)

**TU**Delft

- (c) X(t) can be generated by passing white noise through a filter. Assume the noise power spectral density of the input is 1 W/Hz. Specify the filter transfer function H(f).
- (d) Let Y(t) = X(t-5). Determine  $S_Y(f)$ .



- (c) X(t) can be generated by passing white noise through a filter. Assume the noise power spectral density of the input is 1 W/Hz. Specify the filter transfer function H(f).
- (d) Let Y(t) = X(t-5). Determine  $S_Y(f)$ .
- (c) The filter H(f) needs to satisfy  $|H(f)|^2 = S_X(f)$ . Hence, it is a bandpass filter,

$$H(f) = egin{cases} \sqrt{2} & |f \pm f_0| \leq rac{B}{2} \\ 0 & ext{otherwise} \end{cases}$$

where in fact the phase is arbitrary.

(d) The delay in time domain corresponds to a phase shift in frequency domain. This is a filter G(f) with  $|G(f)|^2 = 1$ . Since  $S_Y(f) = |G(f)|^2 S_X(f)$ , we have  $S_Y(f) = S_X(f)$ : the same.

#### Exam July 1, 2021, Question 3

(Continued)

Let Z(t) = 2X(t) + N(t), where N(t) is independent white noise with power spectral density  $N_0$ .

(e) Determine  $S_Z(f)$ . (f) Determine  $S_{XZ}(f)$  and  $S_{NZ}(f)$ .



#### Exam July 1, 2021, Question 3

#### (Continued)

Let Z(t) = 2X(t) + N(t), where N(t) is independent white noise with power spectral density  $N_0$ .

(e) Determine  $S_Z(f)$ . (f) Determine  $S_{XZ}(f)$  and  $S_{NZ}(f)$ .

(e) The power spectral density of the noise is  $S_N(f) = N_0$  (a constant). Then, since the noise is independent,

$$S_Z(f) = 4S_X(f) + S_N(f) = \begin{cases} 8 + N_0 & |f \pm f_0| \le \frac{B}{2} \\ N_0 & \text{otherwise} \end{cases}$$

(f)

 $R_{XZ}(\tau) = E[X(t)Z(t+\tau)] = E[X(t)(2X(t+\tau) + N(t+\tau))]$ = 2E[X(t)(X(t+\tau)] = 2R\_X(\tau)

Therefore:  $S_{XZ}(f) = 2S_X(f)$ . Similarly,  $S_{NZ}(f) = S_N(f) = N_0$ .

#### Exam July 31, 2020, Question 3

Let  $\boldsymbol{W}$  be an exponentially distributed random variable, with pdf

$$f_W(w) = egin{cases} e^{-w} & w \geq 0 \ 0 & ext{otherwise.} \end{cases}$$

Consider the random process X(t) = t - W.

- (a) Draw three realizations of X(t).
- (b) Determine the CDF  $F_W(w)$  and  $F_{X(t)}(x)$ , and the pdf of X(t).



#### Exam July 31, 2020, Question 3 Solution

(a) Pick w following an exponential distribution (hence w > 0, then plot X(t) = t - w as function of t:



(b) W has an exponential distribution with  $\lambda = 1$ . (See Thm. 4.8)

$$F_W(w) = \mathsf{P}[W < w] = egin{cases} 1 - e^{-w} & w \ge 0 \ 0 & w < 0 \end{cases}$$

$$F_{X(t)}(x) = P[X < x] = P[t - W < x] = P[W > t - x]$$
  
=  $1 - P[W < t - x] = \begin{cases} e^{x-t} & x \le t \\ 1 & x > t \end{cases}$   
 $f_{X(t)}(x) = \frac{d F_{X(t)}(x)}{d x} = \begin{cases} e^{x-t} & x \le t , \\ 0 & x > t \end{cases}$ 



- (c) Determine E[W] and compute the expected value function,  $\mu_{X(t)}$ .
- (d) Determine  $E[W^2]$  and compute the autocovariance function,  $C_X(t,\tau)$ .



(c) Determine E[W] and compute the expected value function, μ<sub>X(t)</sub>.
(d) Determine E[W<sup>2</sup>] and compute the autocovariance function, C<sub>X</sub>(t, τ).

(c) For an exponential distribution with  $\lambda = 1$ , E[W] = 1 $\mu_X(t) = E[t - W] = t - E[W] = t - 1.$ (d)  $E[W^2] = 2$ .  $C_X(t,\tau) = \mathsf{E}[X(t)X(t+\tau)] - \mu_X(t)\mu_X(t+\tau)$  $= E[(t - W)(t + \tau - W)] - (t - 1)(t + \tau - 1)$  $= t(t + \tau) - E[(2t + \tau)W] + E[W^2]$  $-t(t+\tau)+2t+\tau-1$  $= -(2t + \tau)E[W] + 2 + 2t + \tau - 1$ = 1



(e) Is X(t) a WSS random process? (Motivate)(f) Is it an i.i.d. process? (Motivate)



(e) Is X(t) a WSS random process? (Motivate)(f) Is it an i.i.d. process? (Motivate)

- (e) Not WSS because  $\mu_X(t)$  is dependent on t.
- (f) Not iid because samples are clearly correlated to each other (not independent) and samples do not have the same distribution (it depends on t).



#### Exam July 31, 2020, Question 4

In this question, all signals are considered in the frequency domain.

The fundamentals behind a noise canceling headphone are schematically drawn in the figure.



We wish to listen to music X(f) transmitted over a loudspeaker with unknown response  $H_0(f)$ , but the ear signal Y(f) is disturbed by unknown environment noise W(f), which has been filtered by an unknown channel response  $H_1(f)$ . We measure the ear signal with microphone 1. An additional microphone (mic2) also captures the noise signal, but it is filtered by an unknown filter  $H_2(f)$ .

#### **ŤU**Delft



We wish to design a filter G(f) such that the noise signal on Y is perfectly canceled. While we design G(f), it is not included in the schematic.

(a) What is the desired solution for G(f) in terms of  $H_1(f)$  and  $H_2(f)$ ? (b) Show that  $H_2^{-1}(f) = |H_2(f)|^{-2} H_2^*(f)$ .





We wish to design a filter G(f) such that the noise signal on Y is perfectly canceled. While we design G(f), it is not included in the schematic.

(a) What is the desired solution for G(f) in terms of  $H_1(f)$  and  $H_2(f)$ ? (b) Show that  $H_2^{-1}(f) = |H_2(f)|^{-2} H_2^*(f)$ .

(a) G(f) = H<sub>2</sub><sup>-1</sup>(f)H<sub>1</sub>(f).
(b) It is the inverse because H<sub>2</sub><sup>-1</sup>(f)H<sub>2</sub>(f) = |H<sub>2</sub>(f)|<sup>-2</sup>H<sub>2</sub><sup>\*</sup>(f)H<sub>2</sub>(f) = 1.

#### Exam July 31, 2020, Question 4

(Continued)

X(f) and W(f) are considered to be independent random processes, with power spectral densities  $S_X(f)$  and  $S_W(f)$ , respectively.

- (c) Give expressions for  $S_Y(f)$ ,  $S_V(f)$  and  $S_{YV}(f)$  in terms of  $S_X(f)$  and  $S_W(f)$ .
- (d) Which of these (cross) power spectral densities can we observe?
- (e) Give an expression for G(f) in terms of observed quantities.



#### Exam July 31, 2020, Question 4

(Continued)

**ữU**Delft

X(f) and W(f) are considered to be independent random processes, with power spectral densities  $S_X(f)$  and  $S_W(f)$ , respectively.

- (c) Give expressions for  $S_Y(f)$ ,  $S_V(f)$  and  $S_{YV}(f)$  in terms of  $S_X(f)$  and  $S_W(f)$ .
- (d) Which of these (cross) power spectral densities can we observe?
- (e) Give an expression for G(f) in terms of observed quantities.

(c)  

$$S_{Y}(f) = |H_{0}(f)|^{2}S_{X}(f) + |H_{1}(f)|^{2}S_{W}(f)$$

$$S_{V}(f) = |H_{2}(f)|^{2}S_{W}(f)$$

$$S_{YV}(f) = H_{1}(f)H_{2}^{*}(f)S_{W}(f)$$

(d) Using the microphone signals, we can observe Y(f) and V(f), and estimate S<sub>Y</sub>(f), S<sub>V</sub>(f) and S<sub>YV</sub>(f).
(e) G(f) = S<sub>V</sub><sup>-1</sup>(f)S<sub>YV</sub>(f)

#### Exam 2 July 2020, Question 4

Let the random sequence  $X_n$  be a constant 2, perturbed by zero mean i.i.d. noise  $N_n$ , with  $var[N_n] = \sigma^2$ .

The random sequence  $Y_n$  is obtained by filtering  $X_n$ , where the impulse response  $h_n$  of the LTI filter is given by

$$h_n = \begin{cases} 1 & n = 0, \\ -\frac{1}{2} & n = 1, \\ 0 & \text{otherwise} \end{cases}$$





#### Exam 2 July 2020, Question 4

(a) Show that the auto-correlation sequence of  $X_n$  is given by  $R_X[k] = 4 + \sigma^2 \delta[k] \, .$ 

(b) Find  $E[Y_n]$ .



#### Exam 2 July 2020, Question 4

(a) Show that the auto-correlation sequence of  $X_n$  is given by  $R_X[k] = 4 + \sigma^2 \delta[k] \, .$ 

(b) Find  $E[Y_n]$ .

(a) Since  $X_n$  is i.i.d., we know  $C_X[k] = \sigma^2 \delta[k]$ . Then  $R_X[k] = C_X[k] + E[X]^2 = \sigma^2 \delta[k] + 4.$ 

(b)

$$Y_n = X_n - \frac{1}{2}X_{n-1}$$
$$E[Y_n] = E[X_n] - \frac{1}{2}E[X_{n-1}] = 2 - 1 = 1.$$



(c) Find the auto-correlation  $R_Y[n, k]$  and the auto-covariance  $C_Y[n, k]$ .



(c) Find the auto-correlation  $R_Y[n, k]$  and the auto-covariance  $C_Y[n, k]$ .

(c) 
$$R_{Y}[n,k] = E[Y_{n}Y_{n+k}] = E[(X_{n} - \frac{1}{2}X_{n-1})(X_{n+k} - \frac{1}{2}X_{n+k-1})]$$
  
 $= E[X_{n}X_{n+k}] - \frac{1}{2}E[X_{n-1}X_{n+k}] - \frac{1}{2}E[X_{n}X_{n+k-1}] + \frac{1}{4}E[X_{n-1}]$   
 $= 4 + \sigma^{2}\delta[k] - \frac{1}{2}(4 + \sigma^{2}\delta[k+1]) - \frac{1}{2}(4 + \sigma^{2}\delta[k-1]) + \frac{1}{2}(4 + \sigma^{2}\delta[k-1]) + \frac{1}{2}\delta[k-1] + \frac{1}{2}\delta[k-1$ 

- (d) Is  $Y_n$  i.i.d.? Is  $Y_n$  wide sense stationary? (Motivate)
- (e) Find the cross-correlation  $R_{XY}[n, k]$  and cross-covariance  $C_{XY}[n, k]$ .



- (d) Is  $Y_n$  i.i.d.? Is  $Y_n$  wide sense stationary? (Motivate)
- (e) Find the cross-correlation  $R_{XY}[n, k]$  and cross-covariance  $C_{XY}[n, k]$ .
- (d) Not i.i.d.:  $C_{Y}[n, k]$  shows clearly that  $Y_{n}$  is not independent from  $Y_{n-1}$ . WSS because  $E[Y_n]$  is independent of n and  $C_Y[n, k]$  is independent of *n*. (e)  $R_{XY}[n,k] = E[X_n Y_{n+k}] = E[X_n (X_{n+k} - \frac{1}{2} X_{n+k-1})]$  $= R_X[k] - \frac{1}{2}R_X[k-1] = 4 + \sigma^2 \delta[k] - \frac{1}{2} \left(4 + \sigma^2 \delta[k-1]\right)$  $= 2 + \sigma^2 \left( \delta[k] - \frac{1}{2} \delta[k-1] \right)$  $C_{XY}[n,k] = \sigma^2 \left( \delta[k] - \frac{1}{2} \delta[k-1] \right)$

- (f) Are  $X_n$  and  $Y_n$  jointly wide sense stationary? (Motivate)
- (g) Compute the average power of  $Y_n$ .
- (h) If, moreover,  $N_n$  is Gaussian distributed, then is  $Y_n$  Gaussian distributed? (Motivate)

- (f) Are  $X_n$  and  $Y_n$  jointly wide sense stationary? (Motivate)
- (g) Compute the average power of  $Y_n$ .
- (h) If, moreover,  $N_n$  is Gaussian distributed, then is  $Y_n$  Gaussian distributed? (Motivate)
- (f) Yes, because  $X_n$  and  $Y_n$  are each WSS, and  $C_{XY}[n, k]$  only depends on k.
- (g) The average power is  $E[Y_n^2] = R_Y[0] = 1 + \frac{5}{4}\sigma^2$ .
- (h) Yes because the sum of Gaussian random variables is again a Gaussian random variable.

