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Ch.13.9 Ergodicity
Estimating expected value: ensemble average

How can we estimate E[X (n)] if we don’t know the PDF?

Ensemble average: µ̂(n) =
1

I

I∑
i=1

x(n, si ) .

We will need many independent observations!

If WSS process: E[X (n)] is the same for all n. Can we use that?
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Ergodicity

If the process is ergodic, we can also average over time using a single
realization (in this case x(n, s2)):

µ̂ =
1

N

N∑
n=1

x(n, si )

Definition: for an ergodic process, the time average X̄ and the
ensemble average E[X ] are the same.
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Ergodicity
Definition:

For a stationary random process X (t), define the time averages of a
sample function x(t) as

X̄ (T ) =
1

2T

∫ T

−T
x(t)dt

X 2(T ) =
1

2T

∫ T

−T
x2(t)dt

These can be measured from a single available observation.

By definition, for an ergodic process

lim
T→∞

X̄ (T ) = µX

WSS is not sufficient! The autocovariance CX (τ) must go to zero
quickly enough, so time samples are sufficiently independent.
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Ergodicity

Not all WSS processes are ergodic!

Process: Xn = A, with random amplitude A, uniform in [0, 1].

µX = 0.5

CX [k] = E[XnXn+k ]− E[Xn]E[Xn+k ]

= var[A] =
1

12
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Ergodicity
Theorem 13.13 Let X (t) be stationary, with expected value µX and
autocovariance CX (τ).

If
∫∞
−∞ |CX (τ)|dτ <∞, then the sequence X̄ (T ), X̄ (2T ), · · · is an

unbiased, consistent sequence of estimators of µX .

It suffices that CX (0) <∞ (finite variance) and CX (τ) = 0 for
τ > τ0.

Proof

Unbiased:

E[X̄ (T )] =
1

2T
E

[∫ T

−T
X (t)dt

]
=

1

2T

∫ T

−T
E[X (t)]dt

=
1

2T

∫ T

−T
µXdt = µX

6. filtering stochastic processes 6 / 32



Ergodicity
Proof (continued)

Consistent: sufficient to show that lim
T→∞

var[X̄ (T )] = 0:

var[X̄ (T )] = E

[(
1

2T

∫ T

−T
(X (t)− µX )dt

)2
]

=
1

(2T )2
E

[(∫ T

−T
(X (t)− µX )dt

)(∫ T

−T
(X (t ′ − µX )dt ′

)]
=

1

(2T )2

∫ T

−T

∫ T

−T
E[(X (t)− µX )(X (t ′)− µX )]dt ′dt

=
1

(2T )2

∫ T

−T

∫ T

−T
CX (t − t ′)dt ′︸ ︷︷ ︸

bounded by some K

dt
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Ergodicity
Proof (continued)

Note that ∫ T

−T
CX (t − t ′)dt ′ ≤

∫ ∞
−∞
|CX (τ)|dτ <∞

so that there is a constant K such that

var[X̄ (T )] ≤ 1

(2T )2

∫ T

−T
Kdt =

K

2T

Thus lim
T→∞

var[X̄ (T )] ≤ lim
T→∞

K

2T
= 0.
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Similar for the Autocorrelation Function (1)

Ensemble average: R̂X [k] =
1

I

I∑
i=1

x(n, si )x(n + k, si )

Because the process is WSS, the value of n is not important.
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Similar for the Autocorrelation Function (2)

Using time averages, the autocorrelation function can be estimated
from a single observation as

R̄X [k] =
1

N

N∑
n=1

x(n, si )x(n + k , si )
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Similar for the Autocorrelation Function (3)
The basic estimator form for time averages

R̄X [k] =
1

N

N∑
n=1

x(n, si )x(n + k , si )

uses 2N − 1 data samples to estimate N lags of RK [k].

Example for k = 0, 1, 2 and N = 3:

RX [0] =
1

3
{x(1)2 + x(2)2 + x(3)2}

RX [1] =
1

3
{x(1)x(2) + x(2)x(3) + x(3)x(4)}

RX [2] =
1

3
{x(1)x(3) + x(2)x(4) + x(3)x(5)}

Also set RX [−1] = RX [1], RX [−2] = RX [2].
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Similar for the Autocorrelation Function (4)

Modified estimator (using N samples to estimate N correlation lags):

R̂X [k] =
1

N

N−k∑
n=1

x(n, si )x(n + k , si )

RX [0] =
1

3
{x(1)2 + x(2)2 + x(3)2}

RX [1] =
1

3
{x(1)x(2) + x(2)x(3)}

RX [2] =
1

3
{x(1)x(3)}

This estimator is biased: E[R̂X [k]] = N−k
N RX [k]

Unbiased version: R̃X [k] =
1

N − k

N−k∑
n=1

x(n, si )x(n + k, si )
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Suppl. 1, 2: Linear filtering of stochastic processes

Signals are often represented as sample functions of WSS processes:

Use PDF/PMF to describe the amplitude characteristics

Use autocorrelation to describe the time/spatial varying nature of the
signals.
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Linear filtering stochastic processes

If the input is a sample function x(t) of a random process X (t) we get

y(t) =

∫ ∞
−∞

h(u)x(t − u)du = h(t) ∗ x(t)

and therefore we write

Y (t) =

∫ ∞
−∞

h(u)X (t − u)du = h(t) ∗ X (t)
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Expected value of the output

In general:

E[Y (t)] = E

[∫ ∞
−∞

h(u)X (t − u)du

]
=

∫ ∞
−∞

h(u)E [X (t − u)] du

= h(t) ∗ E[X (t)]

If X (t) is WSS, then E[X (t)] = µX is constant:

E[Y (t)] = µX

∫ ∞
−∞

h(u)du
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Crosscorrelation (WSS input)

Next, we look at the autocorrelation of Y (t), and crosscorrelation of
X (t) with Y (t).

It is convenient to first compute the crosscorrelation:

RXY (τ) = E[X (t)Y (t + τ)]

= E

[
X (t)

∫ ∞
−∞

h(v)X (t + τ − v) dv

]
=

∫ ∞
−∞

h(v) E [X (t)X (t + τ − v)] dv

=

∫ ∞
−∞

h(v)RX (τ − v) dv = h(τ) ∗ RX (τ)
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Autocorrelation (WSS input)

RXY (τ) = h(τ) ∗ RX (τ)

The autocorrelation of the output is then

RY (τ) = E[Y (t)Y (t + τ)]

= E

[∫ ∞
−∞

h(u)X (t − u) du

∫ ∞
−∞

h(v)X (t + τ − v) dv

]
=

∫ ∞
−∞

h(u)

∫ ∞
−∞

h(v) E [X (t − u)X (t + τ − v)] dvdu

=

∫ ∞
−∞

h(u)

∫ ∞
−∞

h(v)RX (τ − v + u) dvdu

=

∫ ∞
−∞

h(u)RXY (τ + u) du = h(−τ) ∗ RXY (τ)

= h(−τ) ∗ h(τ) ∗ RX (τ)
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Autocorrelation (WSS input)

Hence, if X (t) is WSS, then Y (t) is also WSS: E[Y (t)] is independent
of time, and RY (t, τ) only depends on the shift τ .

Since also RXY (t, τ) only depends on τ , we conclude that X (t) and
Y (t) are jointly WSS.
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Output distribution

What can we say about the PDF (or PMF) of the output?

In general this is difficult!

Exception: a Gaussian stochastic process.
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Output distribution

If the input X (t) is a stationary Gaussian stochastic process, and

the filter is LTI with impulse response h(t),

then the output is also stationary Gaussian, with expected value and
autocorrelation as specified before.

“Handwaving proof”: Remember that a linear transformation of
jointly Gaussian RVs gives jointly Gaussian RVs.
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Summarizing

WSS input gives WSS output

Statistical descriptions of X (t):

• mean µX
• Autocorrelation RX (τ).

Statistical descriptions of Y (t):

• mean µY = µX
∫
t h(t)dt

• RY (τ) = h(−τ) ∗ h(τ) ∗RX (τ).

WSS Gaussian input gives WSS Gaussian output
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Example 1

Let X (t) be WSS with E[X (t)] = 10. Apply a linear filter with impulse
response

h(t) =

{
et/0.2 0 ≤ t ≤ 0.1 sec.

0 otherwise

Determine E[Y (t)]

E[Y (t)] = E[X (t)]

∫ ∞
−∞

h(t)dt = 10

∫ 0.1

0
et/0.2dt = 2(e0.5 − 1)
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Example 2

Given h(t) and the white Gaussian noise process W (t) with
RW (τ) = η0 δ(τ).

Find

E [Y (t)]

Crosscorrelation RWY (τ)

Autocorrelation RY (τ)

(”White” means zero mean, iid)
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Example 2

E[W (t)] = 0 (white Gaussian noise process). So

E[Y (t)] = E[W (t)]

∫ T

0

1

T
dt = 0.

Crosscorrelation of input W (t) with output Y (t):

RWY (τ) =

∫ ∞
−∞

h(u)RW (τ − u) du =
η0

T

∫ T

0
δ(τ − u) du

=

{η0

T
0 ≤ τ ≤ T

0 otherwise.
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Example 2

RY (τ) =

∫ ∞
−∞

h(v)RWY (τ + v) dv =

∫ T

0

1

T
RWY (τ + v) dv

First write RWY (τ + v) as function of v :

RWY (τ + v) =

{
η0
T 0 ≤ τ + v ≤ T

0 otherwise
=

{
η0
T −τ ≤ v ≤ T − τ
0 otherwise.

Integration boundaries now depend on τ . Hence, we get two cases:

0 ≤ τ ≤ T : RY (τ) =
1

T

∫ T−τ

0

η0

T
dv =

η0(T − τ)

T 2

−T ≤ τ ≤ 0 : RY (τ) =
1

T

∫ T

−τ

η0

T
dv =

η0(T + τ)

T 2

Altogether: RY (τ) =

{
η0(T−|τ |)

T 2 |τ | ≤ T ,

0 otherwise.
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Example 3

RY (τ) = h(τ) ∗ h(−τ) ∗ RX (τ)

= g(τ) ∗ RX (τ)

g(τ) = h(τ) ∗ h(−τ) =

∫ ∞
−∞

3e−tu(t) 3e−t+τu(−τ + t) dt

=

{
9eτ

∫∞
τ e−2tdt = 9

2e
−τ if τ ≥ 0

9eτ
∫∞

0 e−2tdt = 9
2e
τ if τ < 0
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Example 3

RY (τ) = g(τ) ∗ RX (τ) =

(
9

2
e−τu(τ) +

9

2
eτu(−τ)

)
∗ (4 + 3δ(τ))

=

∫ +∞

−∞

9

2

(
e−tu(t) + etu(−t)

)
(4 + 3δ(τ − t))dt

=
36

2

∫ ∞
0

e−tdt +
36

2

∫ 0

−∞
etdt +

27

2
e−τu(τ) +

27

2
eτu(−τ)

= 36 +
27

2
e−|τ |
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Sampling and filtering of random processes
Let X (t) be a continuous WSS process with E[X (t)] = µX and RX (τ).

Sample with period Ts : Xn = X (nTs). Then

Xn is also WSS with E[Xn] = µX and RX [k] = RX (kTs), because

E[Xn] = E[X (nTs)] = µX

RX [k] = E[XnXn+k ] = E[X (nTs)X ([n + k]Ts)] = RX (kTs).

Filtering of discrete-time random sequences:
Yn = hn ∗ Xn =

∑
j hjXn−j

E[Yn] = E[Xn]
∑
j

hj

RXY [k] = E[XnYn+k ] =
∑
j

hjRX [k − j ] = hk ∗ RX [k]

RY [k] = E[YnYn+k ] =
∑
i

hi
∑
j

hjRX [k + i − j ]

︸ ︷︷ ︸
RXY [k+i ]

= h−k ∗ RXY [k]
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Example
Let Yn be a sampled version of stochastic process Y (t). Y (t) has
autocorrelation function

RY (τ) =

{
10−9(10−3 − |τ |) |τ | ≤ 10−3,

0 otherwise.

What is the autocorrelation function of the sampled process Yn if
Fs = 104 samples/sec?

RY [k] = RY

(
k

1

Fs

)
=

{
10−9(10−3 − |k 1

Fs
|) |k 1

Fs
| ≤ 10−3

0 otherwise

=

{
10−9(10−3 − |k 10−4|) |k 10−4| ≤ 10−3,

0 otherwise.

=

{
10−6(1− |0.1k|) |k| ≤ 10,

0 otherwise.
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Problem 2.7 (modified notation)
Consider Xn = aXn−1 + Vn, where Vn: iid, E[Vn] = 0, RV [k] = σ2δ[k].

Find RX [k].

RVX [k] = E[Vn−kXn] = E[Vn−k(aXn−1 + Vn)]

= aRVX [k − 1] + σ2δ[k]

⇒ RVX [k] =

{
σ2ak k ≥ 0,

0 k < 0.

RXV [k] = RVX [−k]

RX [k] = E[Xn−kXn] = E[Xn−k(aXn−1 + Vn)]

= aRX [k − 1] + RXV [k]
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Problem 2.7 (cont’d)
We saw until now:

Rx [k] = aRX [k − 1] + RXV [k] , RXV [k] =

{
σ2a−k k ≤ 0,

0 k > 0.

k > 0 : RX [k] = aRX [k − 1] = · · · = akRX [0]

k = 0 : RX [0] = aRX [−1] + σ2 = aRX [1] + σ2 = a2RX [0] + σ2

RX [0] =
σ2

1− a2
=: σ2

X

It follows, for k ≥ 0: RX [k] = akσ2
X

Also, for k < 0, RX [k] = RX [−k] = a−kσ2
X

}
⇒ RX [k] = a|k|

σ2

1− a2
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To do for this lecture:

Make some selected exercises of the Supplement:

1.1, 1.3, 2.1, 2.3, 2.5, 2.7

(Unfortunately, the supplement has far fewer exercises)

Next lecture, we’ll do Supplement Sections 5 and 6.
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