EE2S31 Signal Processing - Stochastic Processes Lecture 4: Estimation of a RV - Ch. 12

Alle-Jan van der Veen

4 May 2022

Today: Ch. 12 Estimation of a RV

We want to estimate the realization of a random variable, while the random variable itself cannot be observed, e.g.

- Due to noise
- No available sensor
- Not available in time (e.g., prediction)

What is the best estimate?

Today: Ch. 12 Estimation of a RV

We want to estimate the realization of a random variable, while the random variable itself cannot be observed, e.g.

- Due to noise

■ No available sensor
■ Not available in time (e.g., prediction)

What is the best estimate?

- Define "best": need cost function (e.g., mean square error)
- What knowledge is available? (data model, observations)
- Feasibility/max complexity of calculations

There are many answers!
This chapter shows 4 estimators: MMSE, MAP, ML, and LMMSE.

Estimation starts with a data model

RV of interest: X; observations y_{1}, \ldots, y_{N} of RV Y.
Often we have a forward data model, e.g.

- Linear model: $Y=A X+N$
- Autoregressive model: $X_{n+1}=A X_{n}+V_{n}$
- State-space model:

$$
\begin{cases}X_{n+1} & =A X_{n}+B u_{n}+V_{n} \\ Y_{n} & =C X_{n}+D u_{n}+W_{n}\end{cases}
$$

This naturally connects to the conditional PDF $f_{Y \mid X}(y \mid x)$.
But, given an observation $Y=y$, it is also natural to work with $f_{X \mid Y}(x \mid y)$. This relates to an inverse data model.

Estimation of RVs that cant be observed

Imagine we cannot observe X itself, but we want to estimate it using some related observations (and knowledge on the statistics).

What can we do if we have
■ Only knowledge of statistics of X ? (Blind estimate)

- Some information about X, e.g., $X \in A$? (e.g., $X \geq 5$)

■ Knowledge of a related variable? (e.g., observe $Y=X+N$)

Notation

X is the RV of interest, Y is an RV that we can observe.

■ If the observation is $Y=y$, then our estimate of the (unobserved) realization of X is a function of y, denoted by $\hat{x}(y)$.

- The same function, but now leaving Y random, is denoted as $\hat{X}(Y)$. This is a random variable
- We can use the PDF $f_{Y}(y)$ to evaluate expressions for $\hat{X}(Y)$, such as $\mathrm{E}[\hat{X}(Y)]$ or $\operatorname{var}[\hat{X}(Y)]$

Minimum Mean-Squared Error

Without any measurements, what can we do?

- Let's assume we know the prior pdf, $f_{X}(x)$:

How do we know which value is the best estimate of X ?

Minimum Mean-Squared Error

Without any measurements, what can we do?

- Let's assume we know the prior pdf, $f_{X}(x)$:

How do we know which value is the best estimate of X ?

- Use a proper distortion measure (cost function).

A measure that is often minimized is the mean-squared error:

$$
e=\mathrm{E}\left[(X-\hat{x})^{2}\right]
$$

MMSE - Blind Estimate

- Define the mean squared error (MSE):

$$
e=\mathrm{E}\left[(X-\hat{x})^{2}\right]=\mathrm{E}\left[X^{2}\right]-2 \hat{x} \mathrm{E}[X]+\hat{x}^{2}
$$

- Minimize MSE by taking derivative to \hat{x} and setting it to zero:

$$
\frac{\mathrm{de}}{\mathrm{~d} \hat{x}}=-2 \mathrm{E}[X]+2 \hat{x}=0 \quad \Rightarrow \quad \hat{x}=\mathrm{E}[X]
$$

- The minimum MSE is $e=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=\operatorname{var}[X]$

Is this what we expect?

MMSE - Blind Estimate

$\square \mathrm{E}[X]$ is the "most typical" value for X.

Knowing only $f_{X}(x)$, taking $\hat{x}=\mathrm{E}[X]$ is the best we can do under MSE.

MMSE estimate - with some side information on X

 Imagine that we have additional information:$$
X \in A
$$

Can we use this information to improve our estimate?

$$
\begin{aligned}
& e=\mathrm{E}\left[(X-\hat{x})^{2} \mid A\right]=\mathrm{E}\left[X^{2} \mid A\right]-2 \hat{x} \mathrm{E}[X \mid A]+\hat{x}^{2} \\
& \frac{\mathrm{~d} e}{\mathrm{~d} \hat{x}}=-2 \mathrm{E}[X \mid A]+2 \hat{x}=0 \quad \Rightarrow \quad \hat{x}=\mathrm{E}[X \mid A]
\end{aligned}
$$

MMSE - Estimation Given a Random Variable

We cannot observe X directly, but we can observe a related random variable Y, e.g.

$$
Y=X+N
$$

- In that case, we can make \hat{X} a function of Y, say $\hat{X}(Y)$. Suppose the observation is $Y=y$:

$$
\begin{gathered}
e(y)=\mathrm{E}\left[(X-\hat{x}(y))^{2} \mid Y=y\right]=\mathrm{E}\left[X^{2} \mid Y=y\right]-2 \hat{x}(y) \mathrm{E}[X \mid Y=y]+\hat{x}^{2}(y) \\
\frac{\partial e(y)}{\partial \hat{x}(y)}=-2 \mathrm{E}[X \mid Y=y]+2 \hat{x}(y)=0 \quad \Rightarrow \quad \hat{x}(y)=\mathrm{E}[X \mid Y=y]
\end{gathered}
$$

- We can also say $\hat{X}(Y)=\mathrm{E}[X \mid Y]$: a random variable
- The minimum MSE is

$$
e(y)=\mathrm{E}\left[X^{2} \mid Y=y\right]-\mathrm{E}[X \mid Y=y]^{2}=\operatorname{var}[X \mid Y=y]
$$

MMSE

Example: $Y=X+N$
with high correlation between random variables X and Y

With observation $y=2$, the posterior density $f_{X \mid Y}(x \mid y)$ is very concentrated around $\hat{x}=\mathrm{E}[X \mid y=2] \approx 1.5$

Problem 12.1.6

A signal X and noise Z are independent Gaussian $(0,1)$ random variables, and $Y=X+Z$ is a noisy observation of the signal X.

- Find $\hat{X}(Y)$, the MMSE estimator of X given Y

Problem 12.1.6

A signal X and noise Z are independent Gaussian $(0,1)$ random variables, and $Y=X+Z$ is a noisy observation of the signal X.

- Find $\hat{X}(Y)$, the MMSE estimator of X given Y

The MMSE estimator of X given Y is always the conditional ezpectation. Random variables Y and X are jointly (bivariate) Gaussian. Then (see Thm. 7.15)

$$
\hat{X}(Y)=\mathrm{E}[X \mid Y]=\rho_{X Y} \frac{\sigma_{X}}{\sigma_{Y}}\left(Y-\mu_{Y}\right)+\mu_{X}
$$

Problem 12.1.6 (cont'd)

In this case, it is given that $\mu_{X}=0, \sigma_{X}=1$, and

$$
\mu_{Y}=\mathrm{E}[Y]=\mathrm{E}[X]+\mathrm{E}[Z]=0
$$

Since X and Z are independent,

$$
\begin{aligned}
\sigma_{Y}^{2} & =\sigma_{X}^{2}+\sigma_{Z}^{2}=2 \\
\rho_{X, Y} & =\frac{\operatorname{cov}[X, Y]}{\sigma_{X} \sigma_{Y}} \\
& =\frac{\mathrm{E}[X(X+Z)]-0}{\sigma_{X} \sigma_{Y}} \\
& =\frac{\mathrm{E}\left[X^{2}\right]+\mathrm{E}[X] \mathrm{E}[Z]}{\sigma_{X} \sigma_{Y}}=\frac{\sigma_{X}}{\sigma_{Y}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

It follows that

$$
\hat{X}(Y)=\mathrm{E}[X \mid Y]=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(Y-0)+0=\frac{Y}{2}
$$

(Not intuitive: why not Y ? (See also Pr. 12.2.9))

Problem 12.1.6 (contd; cf. Pr. 12.1.7)

Now derive this from first principles:
To compute $\mathrm{E}[X \mid Y]$, first compute $f_{X \mid Y}(x \mid y)$.

- Forward model: given $X=x$, then $Y=x+Z$, hence (Thm. 6.4, also see SP2 slide 33)

$$
f_{Y \mid X}(y \mid x)=f_{Z}(y-x)
$$

- Use Bayes:

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\frac{f_{Z}(y-x) f_{X}(x)}{\int f_{Z}(y-x) f_{X}(x) \mathrm{d} x} \\
\mathrm{E}[X \mid Y=y]=\int x f_{X \mid Y}(x \mid y) \mathrm{d} x=\frac{\int x f_{Z}(y-x) f_{X}(x) \mathrm{d} x}{\int f_{Z}(y-x) f_{X}(x) \mathrm{d} x}
\end{gathered}
$$

Problem 12.1.6 (contd)

- Insert Gaussian models for X and Z : (for normalization constant c)

$$
\begin{aligned}
\hat{x}(y)=\mathrm{E}[X \mid Y=y] & =\frac{\int x \not \subset e^{-(y-x)^{2} / 2} e^{-x^{2} / 2} \mathrm{~d} x}{\int \not e^{-(y-x)^{2} / 2} e^{-x^{2} / 2} \mathrm{~d} x} \\
& =\frac{\int x e^{-\left(x-\frac{1}{2} y\right)^{2}} e^{-y^{2} / 4} \mathrm{~d} x}{\int e^{-\left(x-\frac{1}{2} y\right)^{2}} e^{-y^{2} / 4} \mathrm{~d} x} \\
& =\frac{\int x c^{\prime} e^{-\left(x-\frac{1}{2} y\right)^{2}} \mathrm{~d} x}{1}
\end{aligned}
$$

This evaluates to the expected value of a Gaussian $\left(\frac{1}{2} y, \frac{1}{2}\right)$. Thus, $\hat{x}(y)=\mathrm{E}[X \mid Y=y]=\frac{1}{2} y$. The mean square error is $e^{*}=\operatorname{var}[X \mid Y]=\frac{1}{2}$.

Generalization: Bayesian estimation of a RV

Let's do this for more general cost functions.

- Define a non-negative cost function $C(X, \hat{X}(Y))$, e.g.

$$
C(X, \hat{X}(Y))=(X-\hat{X}(Y))^{2}
$$

- Minimize expected costs: $e=\mathrm{E}[C(X, \hat{X}(Y))]$

Since both X and $\hat{X}(Y)$ are random variables, we can express e as

$$
e=\iint C(x, \hat{x}(y)) f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

Bayesian estimation of a RV

Remember Bayes' rule:

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)
$$

- Using Bayes' rule, we can write

$$
e=\int \underbrace{\int C(x, \hat{x}(y)) f_{X \mid Y}(x \mid y) \mathrm{d} x}_{e(y)} f_{Y}(y) \mathrm{d} y
$$

Notice that

- $C(x, \hat{x}(y)) \geq 0$,
- $f_{X \mid Y}(x \mid y) \geq 0$,
- $f_{Y}(y) \geq 0$

Bayesian estimation of a RV

We can simplify our problem:

- To minimize e, it is sufficient to minimize

$$
e(y)=\int C(x, \hat{x}(y)) f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

for each realization (observation) y :

$$
\hat{x}(y)=\underset{\hat{x}(y)}{\arg \min } \int C(x, \hat{x}(y)) f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

■ For the MMSE cost function we find

$$
\begin{aligned}
\frac{\mathrm{de}(y)}{\mathrm{d} \hat{x}(y)} & =\frac{\mathrm{d}}{\mathrm{~d} \hat{x}(y)} \int(x-\hat{x}(y))^{2} f_{X \mid Y}(x \mid y) \mathrm{d} x \\
& =-2 \int(x-\hat{x}(y)) f_{X \mid Y}(x \mid y) \mathrm{d} x \\
& =0
\end{aligned}
$$

Bayesian estimation of a RV

$$
\begin{aligned}
\Leftrightarrow \quad \int \hat{x}(y) f_{X \mid Y}(x \mid y) \mathrm{d} x & =\int x f_{X \mid Y}(x \mid y) \mathrm{d} x \\
\hat{x}(y) \underbrace{\int f_{X \mid Y}(x \mid y) \mathrm{d} x}_{1} & =\mathrm{E}[X \mid Y=y]
\end{aligned}
$$

The result is (again)

$$
\hat{x}_{\operatorname{MMSE}}(y)=\mathrm{E}[X \mid Y=y]
$$

- The optimal estimator under the squared error condition (the MMSE) is the conditional expectation
- What about other cost functions?

Bayesian Estimation: MAP

Estimators that are derived using the uniform cost function are often referred to as maximum a posteriori (MAP) estimators:

$$
C(x, \hat{x}(y))= \begin{cases}0 & |x-\hat{x}(y)|<\epsilon \\ 1 & \text { otherwise }\end{cases}
$$

- Finding the MAP estimator:

$$
\begin{aligned}
\min _{\hat{x}(y)} e(y) & =\min _{\hat{x}(y)} \int C(x, \hat{x}(y)) f_{X \mid Y}(x \mid y) \mathrm{d} x \\
& =\min _{\hat{x}(y)} \int_{|x-\hat{x}(y)| \geq \epsilon} f_{X \mid Y}(x \mid y) \mathrm{d} x \\
& =\min _{\hat{x}(y)} 1-\int_{|x-\hat{x}(y)|<\epsilon} f_{X \mid Y}(x \mid y) \mathrm{d} x
\end{aligned}
$$

Maximum A Posteriori (MAP) Estimator

Because the integral is over an arbitrarily small region around $\hat{x}(y)$, $e(y)$ is minimized when the PDF $f_{X \mid Y}(x \mid y)$ is maximized;

$$
\hat{x}_{\mathrm{MAP}}(y)=\underset{x}{\arg \max } f_{X \mid Y}(x \mid y)
$$

- The MAP estimate $\hat{x}(y)$ is the value of x that maximizes the conditional density $f_{X \mid Y}(x \mid y)$.
The name maximum a posteriori is derived from the fact that the density $f_{X \mid Y}(x \mid y)$ is often called the posterior density.
- Similarly, the blind estimator for this cost function is

$$
\hat{x}=\arg \max f_{X}(x)
$$

which is the mode of the PDF of X.

Maximum Likelihood Estimator

Notice that

$$
\begin{aligned}
\hat{x}(y)=\underset{x}{\arg \max } f_{X \mid Y}(x \mid y) & =\underset{x}{\arg \max } \frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \\
& =\underset{x}{\arg \max } f_{Y \mid X}(y \mid x) f_{X}(x)
\end{aligned}
$$

If the prior $f_{X}(x)$ is non-informative (e.g., uniform over the whole region of interest), we obtain

$$
\hat{x}(y)=\underset{x}{\arg \max } f_{Y \mid X}(y \mid x)
$$

which is known as the maximum likelihood estimate.

- $f_{Y \mid X}(y \mid x)$ regarded as a function of x is called a likelihood function
- This estimator does not depend on the prior
- ML and MAP are identical if the prior is constant (= uniform).

Problem 12.3.4

Flip a coin n times. For each flip, the probability of heads is $Q=q$, independent of all other flips. Q is a Uniform $(0,1)$ random variable. K is the number of heads in n flips.

- What is the ML estimator of Q given K ?

Problem 12.3.4

Flip a coin n times. For each flip, the probability of heads is $Q=q$, independent of all other flips. Q is a Uniform $(0,1)$ random variable. K is the number of heads in n flips.

- What is the ML estimator of Q given K ?

Given $Q=q$, the conditional PMF of K is (binomial)

$$
P_{K \mid Q}(k \mid q)= \begin{cases}\binom{n}{k} q^{k}(1-q)^{n-k} & k=0,1, \cdots, n \\ 0 & \text { otherwise }\end{cases}
$$

The ML estimator of Q given $K=k$ is

$$
\hat{q}_{M L}(k)=\underset{0 \leq q \leq 1}{\arg \max } P_{K \mid Q}(k \mid q)
$$

Problem 12.3.4 (cont'd)

Differentiating $P_{K \mid Q}(k \mid q)$ with respect to q and setting equal to zero yields

$$
\begin{gathered}
\frac{\mathrm{d} P_{K \mid Q}(k \mid q)}{\mathrm{d} q}=\binom{n}{k}\left(k q^{k-1}(1-q)^{n-k}-(n-k) q^{k}(1-q)^{n-k-1}\right)=0 \\
\Rightarrow \quad k(1-q)=(n-k) q
\end{gathered}
$$

The maximizing value is $q=k / n$ so that

$$
\hat{Q}_{\mathrm{ML}}(K)=\frac{K}{n}
$$

■ This is intuitive: to estimate Q, simply count the relative frequency of Heads.

- Finding the MMSE is much harder!

Linear MMSE estimation of a RV

Bayesian estimators:

- MMSE: $\hat{x}(y)=\mathrm{E}[X \mid Y=y]$
- MAP: $\hat{x}(y)=\underset{x}{\arg \max } f_{X \mid Y}(x \mid y)$

These estimators

- are generally non-linear functions of the observations;
- involve the posterior density $f_{X \mid Y}(x \mid y)$.

The non-linearity makes it sometimes difficult to derive and/or implement these estimators.
Moreover, what if the density $f_{X \mid Y}(x \mid y)$ is unknown and cannot be estimated from the data?

Linear MMSE estimation of a RV

The Linear MMSE estimator constrains the estimator $\hat{X}_{\text {lin }}$ to have a linear relationship with the observable RV:

$$
\hat{X}_{\operatorname{lin}}(Y)=a Y+b
$$

- To find the constants a and b, we again minimize the MSE:

$$
\begin{gathered}
\underset{a, b}{\arg \min } \mathrm{E}\left[\left(X-\hat{X}_{\mathrm{lin}}(Y)\right)^{2}\right] \\
e=\mathrm{E}\left[\left(X-\hat{X}_{\mathrm{lin}}(Y)\right)^{2}\right]=\mathrm{E}\left[(X-a Y-b)^{2}\right]
\end{gathered}
$$

Expanding gives:

$$
e=\mathrm{E}\left[X^{2}\right]-2 a \mathrm{E}[X Y]-2 b \mathrm{E}[X]+a^{2} \mathrm{E}\left[Y^{2}\right]+2 a b \mathrm{E}[Y]+b^{2}
$$

Linear MMSE estimation of a RV (cont'd)

- The optimal parameters are found by setting partial derivatives to zero:

$$
\begin{aligned}
& \frac{\partial e}{\partial a}=-2 \mathrm{E}[X Y]+2 a \mathrm{E}\left[Y^{2}\right]+2 b \mathrm{E}[Y]=0 \\
& \frac{\partial e}{\partial b}=-2 \mathrm{E}[X]+2 a \mathrm{E}[Y]+2 b=0
\end{aligned}
$$

- Solving for a and b then leads to

$$
a^{*}=\frac{\operatorname{cov}[X, Y]}{\operatorname{var}[Y]}=\rho_{X, Y} \frac{\sigma_{X}}{\sigma_{Y}} \quad \text { and } \quad b^{*}=\mathrm{E}[X]-a^{*} \mathrm{E}[Y]
$$

Linear MMSE

■ The Linear MMSE estimator is

$$
\begin{aligned}
\hat{X}_{\text {lin }}(Y)=a^{*} Y+b^{*} & =\frac{\operatorname{cov}[X, Y]}{\operatorname{var}[Y]} Y+\mathrm{E}[X]-\frac{\operatorname{cov}[X, Y]}{\operatorname{var}[Y]} \mathrm{E}[Y] \\
& =\frac{\operatorname{cov}[X, Y]}{\operatorname{var}[Y]}(Y-\mathrm{E}[Y])+\mathrm{E}[X]
\end{aligned}
$$

We have seen a similar result for bivariate Gaussian variables.

- This can be generalized to the case where we estimate a $\mathrm{RV} X$ from a vector random process Y :

$$
\hat{X}_{\operatorname{lin}}(\boldsymbol{Y})=\boldsymbol{C}_{X Y} C_{Y}^{-1}(\boldsymbol{Y}-\mathrm{E}[\boldsymbol{Y}])+\mathrm{E}[X]
$$

and to the case where we estimate a vector random process X from another vector random process Y :

$$
\hat{\boldsymbol{X}}_{\text {lin }}(\boldsymbol{Y})=\boldsymbol{C}_{\boldsymbol{X} \boldsymbol{Y}} C_{\boldsymbol{Y}}^{-1}(\boldsymbol{Y}-\mathrm{E}[\boldsymbol{Y}])+\mathrm{E}[\boldsymbol{X}]
$$

Problem 12.4.2

X is a three-dimensional random vector with $\mathrm{E}[X]=0$ and autocorrelation matrix R_{X} with elements $r_{i j}=(-0.80)^{|i-j|}$. Use X_{1} and X_{2} to form a linear estimate of $X_{3}: \hat{X}_{3}=a_{1} X_{1}+a_{2} X_{2}$.

Problem 12.4.2

X is a three-dimensional random vector with $\mathrm{E}[\boldsymbol{X}]=0$ and autocorrelation matrix R_{X} with elements $r_{i j}=(-0.80)^{|i-j|}$.
Use X_{1} and X_{2} to form a linear estimate of $X_{3}: \hat{X}_{3}=a_{1} X_{1}+a_{2} X_{2}$.
In this problem, we view $Y=\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]^{\top}$ as the observation and $X=X_{3}$ as the variable we wish to estimate. Then $\hat{X}_{\text {lin }}(Y)=R_{X Y} R_{Y}^{-1} Y$ where

$$
\begin{aligned}
& \boldsymbol{R}_{\boldsymbol{Y}}=\mathrm{E}\left[\boldsymbol{Y} \boldsymbol{Y}^{\top}\right]=\left[\begin{array}{cc}
\mathrm{E}\left[X_{1}^{2}\right] & \mathrm{E}\left[X_{1} X_{2}\right] \\
\mathrm{E}\left[X_{2} X_{1}\right] & \mathrm{E}\left[X_{2}^{2}\right.
\end{array}\right]=\left[\begin{array}{cc}
1 & -0.8 \\
-0.8 & 1
\end{array}\right] \\
& \boldsymbol{R}_{X \boldsymbol{Y}}=\mathrm{E}\left[X \boldsymbol{Y}^{\top}\right]=\mathrm{E}\left[X_{3}\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]\right]=\left[\mathrm{E}\left[X_{1} X_{3}\right], \mathrm{E}\left[X_{2} X_{3}\right]\right]=\left[\begin{array}{ll}
0.64, & -0.8
\end{array}\right] \\
& R_{X Y} R_{Y}^{-1}=[0.64,-0.8]\left[\begin{array}{ll}
25 / 9 & 20 / 9 \\
20 / 9 & 25 / 9
\end{array}\right]=[0,-0.8]
\end{aligned}
$$

The optimum linear estimator of X_{3} given X_{1} and X_{2} is

$$
\hat{X}_{3}=-0.8 X_{2}
$$

Estimation of a RV: summary

- Minimum mean-squared error (MMSE) estimation: Minimize $\mathrm{E}\left[(X-\hat{X})^{2}\right]$
- Blind estimation (no observation): we can only use $f_{X}(x)$ $\hat{x}=\mathrm{E}[X]$, i.e., take the mean
- Estimation of X given a related variable Y :

$$
\hat{X}(Y)=\underset{\hat{X}(Y)}{\arg \min } \mathrm{E}\left[(X-\hat{X})^{2} \mid Y\right]=\mathrm{E}[X \mid Y]
$$

Uses $f_{X \mid Y}(x \mid y)$ (inverse model)

Estimation of a RV: summary

- Uniform cost function:

Minimize $C(X, \hat{X})= \begin{cases}0, & |X-\hat{X}|<\epsilon \\ 1, & \text { otherwise }\end{cases}$

- Blind: $\hat{x}=\arg \max _{x} f_{X}(x)$, i.e., take the mode
- Maximum A Posteriori (MAP):

$$
\hat{x}(y)=\underset{x}{\arg \max } f_{X \mid Y}(x \mid y)=\underset{x}{\arg \max } f_{Y \mid X}(y \mid x) \cdot f_{X}(x)
$$

- Maximum Likelihood (ML): $\hat{x}(y)=\arg \max _{X} f_{Y \mid X}(y \mid x)$ ignores $f_{X}(x)$

In most estimation problems, ML is the standard choice.

Estimation of a RV: summary

Special case:

■ Linear MMSE estimation: $\hat{x}(y)=a y+b$; uses only second-order statistics:

$$
\hat{x}(y)=a y+b=\frac{\operatorname{cov}[X, Y]}{\operatorname{var}[Y]}(y-\mathrm{E}[Y])+\mathrm{E}[X]
$$

Example

Let the joint density of X and Y be given by

$$
f_{X, Y}(x, y)= \begin{cases}10 x & 0 \leq x \leq y^{2}, 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We observe realizations of Y and want to estimate X.

Example

- First compute the marginals:

$$
\begin{aligned}
& f_{Y}(y)=\int_{0}^{y^{2}} 10 x \mathrm{~d} x=5 y^{4}, \quad 0 \leq y \leq 1 \quad x \quad 0 \quad 0=y^{2} \\
& f_{X}(x)=\int_{\sqrt{x}}^{1} 10 x \mathrm{~d} y=10\left(x-x^{3 / 2}\right), \quad 0 \leq x \leq 1
\end{aligned}
$$

- Then the conditional densities are

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{10 x}{5 y^{4}}=\frac{2 x}{y^{4}}, \quad 0 \leq x \leq y^{2} \\
& f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{1}{1-\sqrt{x}}, \quad \sqrt{x} \leq y \leq 1
\end{aligned}
$$

Example

■ MMSE: compute the conditional expectation:

$$
\hat{X}_{M M S E}(y)=E[X \mid Y=y]=\int x f_{X \mid Y}(x \mid y) \mathrm{d} x=\int_{0}^{y^{2}} \frac{2 x^{2}}{y^{4}} \mathrm{~d} x=\frac{2}{3} y^{2}
$$

- MAP: maximize the a posteriori density $f_{X \mid Y}(x \mid y)$:

$$
\hat{x}_{M A P}(y)=\underset{x}{\arg \max } f_{X \mid Y}(x \mid y)=\underset{x}{\arg \max } \frac{2 x}{y^{4}}, \quad 0 \leq x \leq y^{2}
$$

The maximum over x is achieved for $x=y^{2}$, so $\hat{x}_{\text {MAP }}(y)=y^{2}$.
■ ML: maximize the likelihood function $f_{Y \mid X}(y \mid x)$.
As function of x, it is monotonically increasing, the maximum over x is achieved for $\sqrt{x}=y$, so

$$
\hat{x}_{\mathrm{ML}}(y)=\underset{x}{\arg \max } f_{Y \mid X}(y \mid x)=y^{2}
$$

Example

- Linear MMSE:

Compute the moments:

$$
\begin{aligned}
\mathrm{E}[X] & =\int_{0}^{1} x f_{X}(x) \mathrm{d} x=10 / 21 \\
\mathrm{E}[Y] & =\int_{0}^{1} y f_{Y}(y) \mathrm{d} y=5 / 6 \\
\mathrm{E}\left[Y^{2}\right] & =\int_{0}^{1} y^{2} f_{Y}(y) \mathrm{d} y=5 / 7 \\
\mathrm{E}[X Y] & =\int_{0}^{1} \int_{0}^{y^{2}} x y f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y=10 / 24
\end{aligned}
$$

Then

$$
\begin{aligned}
\hat{X}_{\text {lin }}(Y) & =\frac{\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]}{\mathrm{E}\left[Y^{2}\right]-\mathrm{E}[Y]^{2}}(Y-\mathrm{E}[Y])+\mathrm{E}[X] \\
& =Y-5 / 14
\end{aligned}
$$

Example

Example

Estimation errors (MSE):

- MMSE:

$$
\mathrm{E}\left[(X-\hat{X}(Y))^{2}\right]=\int_{0}^{1} \int_{0}^{y^{2}}\left(x-\frac{2}{3} y^{2}\right)^{2} 10 x \mathrm{~d} x \mathrm{~d} y=0.0309
$$

■ MAP, ML:

$$
\mathrm{E}\left[(X-\hat{X}(Y))^{2}\right]=\int_{0}^{1} \int_{0}^{y^{2}}\left(x-y^{2}\right)^{2} 10 x \mathrm{~d} x \mathrm{~d} y=0.0926
$$

- LMMSE:

$$
\mathrm{E}\left[(X-\hat{X}(Y))^{2}\right]=\int_{0}^{1} \int_{0}^{y^{2}}\left(x-y+\frac{5}{14}\right)^{2} 10 x \mathrm{~d} x \mathrm{~d} y=0.0312
$$

Some suggested exercises

Ch. 12: 12.1.3, 12.1.5, 12.2.1, 12.2.3, 12.2.5, 12.3.3, 12.4.3

Errata

- Eqn (12.8): x is missing in the integral; $\int_{0}^{r} x \frac{1}{r} \mathrm{~d} x$
- Theorem 12.5: "Discrete" repeated the definition. The new result is:

$$
\hat{x}_{\mathrm{MAP}}\left(y_{j}\right)=\arg \max P_{Y \mid X}\left(y_{j} \mid x\right) P_{X}(x)
$$

(Some typos also two lines above Theorem 12.5)

- Definition 12.2: "MAP" should be "ML"
- Solution of Problem 12.1.5: above and below eqn (1), $0 \leq y \leq 1$ (not " 2 "); eqn (4) gives the total MSE (averaging over Y), but it was asked to give the MSE for $Y=0.5$.
- Problem 12.1.7, above eqn (3): $Z \geq x-y$ (not " $\leq "$)
- Problem 12.2.7: above (6): $n=2$, not 1 . In (6) and (7) also replace 1 by 2 .
- Solution of Problem 12.3.3: $f_{R \mid N}(r \mid n) d r$ should be $\int_{r}^{r+d r} f_{R \mid N}(r \mid n) d r$

