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Today: Ch. 12 Estimation of a RV

We want to estimate the realization of a random variable, while the
random variable itself cannot be observed, e.g.

m Due to noise
m No available sensor

= Not available in time (e.g., prediction)

What is the best estimate?
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Today: Ch. 12 Estimation of a RV

We want to estimate the realization of a random variable, while the
random variable itself cannot be observed, e.g.

m Due to noise
m No available sensor

= Not available in time (e.g., prediction)
What is the best estimate?
m Define “best”: need cost function (e.g., mean square error)

m What knowledge is available? (data model, observations)

m Feasibility/max complexity of calculations

There are many answers!

This chapter shows 4 estimators: MMSE, MAP, ML, and LMMSE.
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Estimation starts with a data model

RV of interest: X; observations y1,...,yy of RV Y.

Often we have a forward data model, e.g.
m Linear model: Y = AX + N

m Autoregressive model: X, 1 = AX, + V,

m State-space model:

Xn+1 — AXn + Bun ‘I‘ Vn
Yn - CXn + Dun + Wn

This naturally connects to the conditional PDF fy|x(y|x).

But, given an observation Y = y, it is also natural to work with
fx|v (x|y). This relates to an inverse data model.
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Estimation of RVs that cant be observed

Imagine we cannot observe X itself, but we want to estimate it using
some related observations (and knowledge on the statistics).

What can we do if we have
= Only knowledge of statistics of X7 (Blind estimate)
= Some information about X, e.g., X € A? (e.g., X > 5)

» Knowledge of a related variable? (e.g., observe Y = X + N)

1@(U Delft 4. estimation



Notation

X is the RV of interest, Y is an RV that we can observe.

m If the observation is Y = y, then our estimate of the (unobserved)
realization of X is a function of y, denoted by X(y).

= The same function, but now leaving Y random, is denoted as X(Y).
This is a random variable

= We can use the PDF fy(y) to evaluate expressions for X(Y), such as
E[X(Y)] or var[X(Y)]
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Minimum Mean-Squared Error
Without any measurements, what can we do?

m Let's assume we know the prior pdf, fx(x):

fx(z)

How do we know which value is the best estimate of X?
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Minimum Mean-Squared Error
Without any measurements, what can we do?

m Let's assume we know the prior pdf, fx(x):

fx ()

How do we know which value is the best estimate of X?

m Use a proper distortion measure (cost function).
A measure that is often minimized is the mean-squared error:

e —E[(X - 27
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MMSE - Blind Estimate

m Define the mean squared error (MSE):

e =E[(X - %)% = E[X?] — 2RE[X] + %2

m Minimize MSE by taking derivative to X and setting it to zero:

jé:sz[X]er?:O = £=E[X]
X

= The minimum MSE is e = E[X?] — E[X]? = var[X]

Is this what we expect?
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MMSE - Blind Estimate

~

/\/\

E[X] X

fx(z)

m E[X] is the “most typical” value for X.

Knowing only fx(x), taking X = E[X] is the best we can do under
MSE.
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MMSE estimate — with some side information on X
Imagine that we have additional information:

XeA
Can we use this information to improve our estimate?
e = E[(X — £)?|A] = E[X?|A] — 2R E[X|A] + #°
— = 2E[X|A]+28=0 = X =E[X|A]
X

A

Example: A: {X >0}

E[X] E[X|4] X
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MMSE — Estimation Given a Random Variable

We cannot observe X directly, but we can observe a related random
variable Y, e.g.
Y=X+N.

m In that case, we can make X a function of Y, say )A<(Y) Suppose the
observation is Y = y:

e(y) = E[(X—%(y))?|Y = y] = E[X?|Y = y]-2&(y) E[X|Y = y]+£*(y)

= 2E[X|Y =y]+2&(y)=0 = &(y)=E[X|Y =y]

= We can also say X(Y) = E[X|Y]: a random variable

® The minimum MSE is
e(y) = E[X?|Y = y] — E[X]Y = y]* = var[X|Y = y]
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MMSE

Example: Y =X+ N

with high correlation between random variables X and Y

Ifxy(z,y)
. - //\ | fx(@)
9 4 I S R AR R
y / 5, L fr(y)
) V 4 N A
A k }A\ PA|Y: (zly =2)
z E z

With observation y = 2, the posterior density fx|y (x|y) is very
concentrated around X = E[X|y =2] ~ 1.5
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Problem 12.1.6

A signal X and noise Z are independent Gaussian(0,1) random
variables, and Y = X + Z is a noisy observation of the signal X.

= Find X(Y), the MMSE estimator of X given Y
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Problem 12.1.6

A signal X and noise Z are independent Gaussian(0,1) random
variables, and Y = X + Z is a noisy observation of the signal X.

= Find X(Y), the MMSE estimator of X given Y

The MMSE estimator of X given Y is always the conditional
ezpectation. Random variables Y and X are jointly (bivariate)
Gaussian. Then (see Thm. 7.15)

A o
X(Y)=E[X|Y]= pwﬁ(y — py) + px
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Problem 12.1.6 (cont'd)

In this case, it is given that ux =0, ox = 1, and
wy = E[Y] =E[X]+E[Z] =0

Since X and Z are independent,

0y = ox+o3=2

cov[X, Y]
oXOy
E[X(X + 2)] -0
oX0y
E[X?] + EIXIE[Z]  ox

pPX)yYy =

OX0y oy

Sl

It follows that
N 1 1 Y

(Not intuitive: why not Y'? (See also Pr. 12.2.9))
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Problem 12.1.6 (contd; cf. Pr. 12.1.7)
Now derive this from first principles:
To compute E[X|Y], first compute fx|y (x|y).

m Forward model: given X = x, then Y = x + Z, hence (Thm. 6.4, also

see SP2 slide 33)
fyix(v|x) = fz(y — x)

m Use Bayes:

fyx(r) (%) fz(y — x)fx(x)
fX|Y(X‘Y) = fy(y) ffZZ - Xx) fj:( )dx

EIX|Y = y] = / X Bty xly)ax = ffxff —_XX)ZX( ))dx

4. estimation
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Problem 12.1.6 (contd)

m Insert Gaussian models for X and Z: (for normalization constant c)
[x¢ e r=x?/2g=x%/2gx
[ #er—xP/2e=x2/2dx
[ xe 2=
fe_(x_%y){ez;ﬁrdx
[xc e~ (=29 dx

1

X(y)=EX|Y =y] =

This evaluates to the expected value of a Gaussian(3y, 3).
Thus, X(y) = E[X|Y = y] = 3y. The mean square error is
e* = var[X|Y] = 1.
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Generalization: Bayesian estimation of a RV
Let's do this for more general cost functions.
= Define a non-negative cost function C(X,X(Y)), e.g.

CX &Y = (X = X))’

= Minimize expected costs: e = E[C(X, X(Y))]

Since both X and X(Y) are random variables, we can express e as

e= [ [ ctxxm) v lxy) dxdy
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Bayesian estimation of a RV
Remember Bayes’ rule:

fx.v(x,¥) = fxjy (xly) fr(y)

m Using Bayes' rule, we can write
e= [ [ clestr))fay(xly)dx fr(x)ey
(v)

e(y

Notice that
m C(x,X(y)) >0,

m fxy(xly) >0,
mfy(y) >0
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Bayesian estimation of a RV
We can simplify our problem:

= To minimize e, it is sufficient to minimize

ely) = / Clx2(y)) fxpy (xly) dx

for each realization (observation) y:

() = argmin [ C(x 2(0)) gy xly) dx
%(y)

m For the MMSE cost function we find

de(y) = d .
B0 @G 0yl ax

— —2/(x—>?(y))fx|Y(X|}/)dX
=0
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Bayesian estimation of a RV
= /Q(Y)fxy(xbf)dxz /XfXY(X|)/)dX

2(y) / fty (xly)dx = E[X|Y = y]

| S —
1

The result is (again)

Xmmse(y) = E[X]Y = y]

m The optimal estimator under the squared error condition (the MMSE)
is the conditional expectation

m What about other cost functions?
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Bayesian Estimation: MAP

Estimators that are derived using the uniform cost function are often
referred to as maximum a posteriori (MAP) estimators:

0 |X_)?(y)’<€7

Clx x(y)) = {

1 otherwise

m Finding the MAP estimator:

mine(y) = min [ Cx20)) gy (xly) s
*(y) 2(y)

= rpin/ fx‘y(x|y)dx
() J|x=&(y)|>e

= minl —/ fX|y(x|y) dx
() Ix—%(y)|<e
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Maximum A Posteriori (MAP) Estimator

Because the integral is over an arbitrarily small region around X(y),
e(y) is minimized when the PDF fy |y (x|y) is maximized;

Xmap(y) = argmax fx|y(x|y)
X

m The MAP estimate X(y) is the value of x that maximizes the
conditional density fx|y(x|y).
The name maximum a posteriori is derived from the fact that the
density fx|y(x|y) is often called the posterior density.

m Similarly, the blind estimator for this cost function is

X = argmax fx(x)
X

which is the mode of the PDF of X.
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Maximum Likelihood Estimator
Notice that

R fyix (vIx) fx(x)
X(y) = argmax fxy(x|ly) = argmax ———"+——=
X X fY(Y)

= argmax fyx(y|x) fx(x)

If the prior fx(x) is non-informative (e.g., uniform over the whole region
of interest), we obtain

X(y) = arg max fy|x(y|x)
X
which is known as the maximum likelihood estimate.
m fy|x(y|x) regarded as a function of x is called a likelihood function

m This estimator does not depend on the prior

= ML and MAP are identical if the prior is constant (= uniform).
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Problem 12.3.4

Flip a coin n times. For each flip, the probability of heads is Q = q,
independent of all other flips. @ is a Uniform(0,1) random variable. K
is the number of heads in n flips.

m What is the ML estimator of @ given K7

<3 S
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Problem 12.3.4

Flip a coin n times. For each flip, the probability of heads is Q = q,
independent of all other flips. @ is a Uniform(0,1) random variable. K
is the number of heads in n flips.

m What is the ML estimator of @ given K7

Given @ = g, the conditional PMF of K is (binomial)

my « n—k
q(l_q) k_0717"'7n)
Prialklq) = (k)

0 otherwise
The ML estimator of Q given K = k is

GmL(k) = argmax Py q(klq)
0<g<1
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Problem 12.3.4 (cont'd)

Differentiating Py|q(k|q) with respect to g and setting equal to zero
yields

Pt (7) (k- ey~ (- gt - ay ) =0

= k(1—q)=(n—k)q
The maximizing value is ¢ = k/n so that

A K
QuL(K) = "

m This is intuitive: to estimate @, simply count the relative frequency
of Heads.

m Finding the MMSE is much harder!
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Linear MMSE estimation of a RV

Bayesian estimators:
m MMSE: %(y) = E[X|Y =]
m MAP: X(y) = arg max fx|y(x|y)

These estimators

m are generally non-linear functions of the observations;

= involve the posterior density fx|y (x|y).

The non-linearity makes it sometimes difficult to derive and/or
implement these estimators.

Moreover, what if the density fx|y(x|y) is unknown and cannot be
estimated from the data?
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Linear MMSE estimation of a RV

The Linear MMSE estimator constrains the estimator )A<|in to have a
linear relationship with the observable RV:

)?Iin(y) =aY+b

m To find the constants a and b, we again minimize the MSE:

argmin E[(X — Xin(Y))?]

)

e = E[(X — Xin(Y))?] = E[(X — aY — b)?]

Expanding gives:
e = E[X?] — 2aE[XY] — 2bE[X] + a*E[Y?] + 2abE[Y] + b?
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Linear MMSE estimation of a RV (cont’d)

m The optimal parameters are found by setting partial derivatives to

zero:
Oe 2
% = —2E[XY] + 2aE[Y“] + 2bE[Y] =0
% = —2E[X]+2aE[Y]+2b=0

m Solving for a and b then leads to

*

cov[X, Y] ox
= ——— = e b* = E[X] — a*E[Y
var[Y] pX’Yay and [X] = a"E[Y]
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Linear MMSE

m The Linear MMSE estimator is
o cov[X, Y]
Xin(Y)=3a"Y = Y + E[X] —

cov[X, Y]
var[Y] Bl

_ cov[X,Y] B
= ] (Y —E[Y]) + E[X]

We have seen a similar result for bivariate Gaussian variables.

m This can be generalized to the case where we estimate a RV X from
a vector random process Y':
Xin(Y) = Cxy Cy (Y — E[Y]) + E[X]
and to the case where we estimate a vector random process X from
another vector random process Y':

Xiin(Y) = Cxy Cy,' (Y — E[Y]) + E[X]
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Problem 12.4.2

X is a three-dimensional random vector with E[X]| = 0 and
autocorrelation matrix Rx with elements r; = (—0.80)/ /|,

A

Use X; and X5 to form a linear estimate of X3: X3 = a1.X7 + a»x X>.
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Problem 12.4.2

X is a three-dimensional random vector with E[X]| = 0 and
autocorrelation matrix Ry with elements r;; = (—0.80)/ /.

Use X; and X» to form a linear estimate of X5: X3 = a1 Xi + 22%.

In this problem, we view Y = [X; X5]” as the observation and X = X3
as the variable we wish to estimate. Then Xi,(Y) = nyR;lY where

E[X?] E[XiXy] ] B [ 1 -08 }

_ T _
Ry = ElYY ]_[E[ngl] E[X? | | 08 1

Rxy = E[XYT] = E[Xs[X; Xo]] = [E[X:X3], E[X2X3]] = [0.64, —0.8]
25/9 20/9

20/9 25/9 ] = [0, -03]
The optimum linear estimator of X3 given X; and X5 is

RxyRy,' = [0.64, —0.8] [

A

X3 =—-0.8X,
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Estimation of a RV: summary

® Minimum mean-squared error (MMSE) estimation:
Minimize E[(X — X)?]

— Blind estimation (no observation): we can only use fx(x)
% = E[X], i.e., take the mean

— Estimation of X given a related variable Y

X(Y) = argminE[(X — X)?| Y] = E[X|Y]
X(Y)

Uses fx|y(x|y) (inverse model)
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Estimation of a RV: summary

m Uniform cost function:

. 0, |X-X
Minimize C(X, X) :{ o | <e

1, otherwise

- Blind: X = arg max, fx(x), i.e., take the mode

— Maximum A Posteriori (MAP):

X(y) = argmax fx|y(x|y) = arg max fy|x(y[x) - fx(x)

— Maximum Likelihood (ML): %(y) = arg max, fy|x(y|x)
ignores fx(x)

In most estimation problems, ML is the standard choice.

4. estimation
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Estimation of a RV: summary

Special case:

m Linear MMSE estimation: X(y) = ay + b; uses only second-order
statistics:

~ cov[X, Y]

X(y)=ay+b= var[Y] (v — E[Y]) + E[X]
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Example
Let the joint density of X and Y be given by

10x 0<x<y?0<y<1
0 otherwise

fx.y(x,y) = {

We observe realizations of Y and want to estimate X.

T . 2

0.4

o1 o0z 03 04 05 06 07 08 08 1

Y
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Example

m First compute the marginals:

y? . 2
fy(y) = /0 10xdx =5y*, 0<y<1

fx(x) = /fledyle(x—x3/2), 0<x<1 Y

m Then the conditional densities are

_ 2
fX|Y(X’y) - fY(y) 5y4 Fa 0<x<y
fX,Y(X7y) 1
frix(ylx) = o) 1ok Vx<y<1
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Example

m MMSE: compute the conditional expectation:

- y? 2x2 2,
XMMSE(y):E[X‘Y:y]:/Xfxy(X|y)dX:/0 7dngy

u MAP: maximize the a posteriori density fxy(x|y):

2
Xmap(y) = argmax fx|y(x|y) = arg max —Z, 0<x<y?
x x y

The maximum over x is achieved for x = y?, so Xuap(y) = y°.

= ML: maximize the likelihood function fy|x(y|x).
As function of x, it is monotonically increasing, the maximum over x
is achieved for \/x = y, so

fmL(y) = arg max fy|x(y[x) = y°
X
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Example

m Linear MMSE:
Compute the moments:

EX] = /lex(X)dX:10/21
01
EY] = [ yhldy =5/
1
B2 = [ Ay =57
1 2
E[XY] = /o/oy xy fx y(x,y)dxdy = 10/24
Then
finlY) = S SR (Y — EIYD + EIX]
— Y-5/14
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Example
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Example
Estimation errors (MSE):

= MMSE:

E[(X — X(Y))] = /01 /0y2 (X ~ §y2>2 10x dxdy = 0.0309

= MAP, ML:

E[(X — X(Y))?] = /01 /Oyz(x — y%)?10x dxdy = 0.0926

= LMMSE:

. 1ory? 52
E[(X — X(Y))]] = /0 /0 <x —y+ 14> 10x dxdy = 0.0312
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Some suggested exercises
Ch. 12: 12.1.3, 12.1.5, 12.2.1, 12.2.3, 12.2.5, 12.3.3, 12.4.3

Errata
= Eqn (12.8): x is missing in the integral; [ x 1dx
m Theorem 12.5: "Discrete” repeated the definition. The new result is:
Fuap (y;) = arg max Py x (yj[x) Px(x)
(Some typos also two lines above Theorem 12.5)
m Definition 12.2: "MAP"” should be "ML"

m Solution of Problem 12.1.5: above and below eqn (1), 0 <y <1 (not "2");
eqn (4) gives the total MSE (averaging over Y'), but it was asked to give
the MSE for Y = 0.5.

m Problem 12.1.7, above eqn (3): Z > x — y (not " <")
m Problem 12.2.7: above (6): n =2, not 1. In (6) and (7) also replace 1 by 2.

= Solution of Problem 12.3.3: fg y(r|n)dr should be frr+dr frin(r|n)dr
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