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Today: Ch. 12 Estimation of a RV
We want to estimate the realization of a random variable, while the
random variable itself cannot be observed, e.g.

Due to noise

No available sensor

Not available in time (e.g., prediction)

What is the best estimate?

Define “best”: need cost function (e.g., mean square error)

What knowledge is available? (data model, observations)

Feasibility/max complexity of calculations

There are many answers!

This chapter shows 4 estimators: MMSE, MAP, ML, and LMMSE.
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Estimation starts with a data model

RV of interest: X ; observations y1, . . . , yN of RV Y .

Often we have a forward data model, e.g.

Linear model: Y = AX + N

Autoregressive model: Xn+1 = AXn + Vn

State-space model:{
Xn+1 = AXn + Bun + Vn

Yn = CXn + Dun + Wn

This naturally connects to the conditional PDF fY |X (y |x).

But, given an observation Y = y , it is also natural to work with
fX |Y (x |y). This relates to an inverse data model.
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Estimation of RVs that cant be observed

Imagine we cannot observe X itself, but we want to estimate it using
some related observations (and knowledge on the statistics).

What can we do if we have

Only knowledge of statistics of X? (Blind estimate)

Some information about X , e.g., X ∈ A? (e.g., X ≥ 5)

Knowledge of a related variable? (e.g., observe Y = X + N)
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Notation

X is the RV of interest, Y is an RV that we can observe.

If the observation is Y = y , then our estimate of the (unobserved)
realization of X is a function of y , denoted by x̂(y).

The same function, but now leaving Y random, is denoted as X̂ (Y ).

This is a random variable

We can use the PDF fY (y) to evaluate expressions for X̂ (Y ), such as
E[X̂ (Y )] or var[X̂ (Y )]
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Minimum Mean-Squared Error
Without any measurements, what can we do?

Let’s assume we know the prior pdf, fX (x):

How do we know which value is the best estimate of X?

Use a proper distortion measure (cost function).

A measure that is often minimized is the mean-squared error:

e = E
[
(X − x̂)2

]
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MMSE – Blind Estimate

Define the mean squared error (MSE):

e = E
[
(X − x̂)2

]
= E[X 2]− 2x̂ E[X ] + x̂2

Minimize MSE by taking derivative to x̂ and setting it to zero:

de

dx̂
= −2E[X ] + 2x̂ = 0 ⇒ x̂ = E[X ]

The minimum MSE is e = E[X 2]− E[X ]2 = var[X ]

Is this what we expect?
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MMSE - Blind Estimate

E[X ] is the “most typical” value for X .

Knowing only fX (x), taking x̂ = E[X ] is the best we can do under
MSE.
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MMSE estimate – with some side information on X
Imagine that we have additional information:

X ∈ A

Can we use this information to improve our estimate?

e = E[(X − x̂)2|A] = E[X 2|A]− 2x̂ E[X |A] + x̂2

de

dx̂
= −2 E[X |A] + 2x̂ = 0 ⇒ x̂ = E[X |A]
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MMSE – Estimation Given a Random Variable
We cannot observe X directly, but we can observe a related random
variable Y , e.g.

Y = X + N.

In that case, we can make X̂ a function of Y , say X̂ (Y ). Suppose the
observation is Y = y :

e(y) = E[(X−x̂(y))2|Y = y ] = E[X 2|Y = y ]−2x̂(y) E[X |Y = y ]+x̂2(y)

∂e(y)

∂x̂(y)
= −2 E[X |Y = y ] + 2x̂(y) = 0 ⇒ x̂(y) = E[X |Y = y ]

We can also say X̂ (Y ) = E[X |Y ]: a random variable

The minimum MSE is
e(y) = E[X 2|Y = y ]− E[X |Y = y ]2 = var[X |Y = y ]
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MMSE

Example: Y = X + N

with high correlation between random variables X and Y

With observation y = 2, the posterior density fX |Y (x |y) is very
concentrated around x̂ = E[X |y = 2] ≈ 1.5
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Problem 12.1.6

A signal X and noise Z are independent Gaussian(0,1) random
variables, and Y = X + Z is a noisy observation of the signal X .

Find X̂ (Y ), the MMSE estimator of X given Y

The MMSE estimator of X given Y is always the conditional
ezpectation. Random variables Y and X are jointly (bivariate)
Gaussian. Then (see Thm. 7.15)

X̂ (Y ) = E[X |Y ] = ρXY
σX
σY

(Y − µY ) + µX
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Problem 12.1.6 (cont’d)
In this case, it is given that µX = 0, σX = 1, and

µY = E[Y ] = E[X ] + E[Z ] = 0

Since X and Z are independent,

σ2Y = σ2X + σ2Z = 2

ρX ,Y =
cov[X ,Y ]

σXσY

=
E[X (X + Z )]− 0

σXσY

=
E[X 2] + E[X ]E[Z ]

σXσY
=
σX
σY

=
1√
2

It follows that

X̂ (Y ) = E[X |Y ] =
1√
2

1√
2

(Y − 0) + 0 =
Y

2

(Not intuitive: why not Y ? (See also Pr. 12.2.9))
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Problem 12.1.6 (contd; cf. Pr. 12.1.7)

Now derive this from first principles:

To compute E[X |Y ], first compute fX |Y (x |y).

Forward model: given X = x , then Y = x + Z , hence (Thm. 6.4, also
see SP2 slide 33)

fY |X (y |x) = fZ (y − x)

Use Bayes:

fX |Y (x |y) =
fY |X (y |x) fX (x)

fY (y)
=

fZ (y − x)fX (x)∫
fZ (y − x) fX (x)dx

E[X |Y = y ] =

∫
x fX |Y (x |y)dx =

∫
x fZ (y − x)fX (x)dx∫
fZ (y − x)fX (x)dx
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Problem 12.1.6 (contd)

Insert Gaussian models for X and Z : (for normalization constant c)

x̂(y) = E[X |Y = y ] =

∫
x �c e

−(y−x)2/2e−x
2/2dx∫

�c e
−(y−x)2/2e−x2/2dx

=

∫
x e−(x−

1
2
y)2����

e−y
2/4dx∫

e−(x−
1
2
y)2����

e−y
2/4dx

=

∫
x c ′ e−(x−

1
2
y)2dx

1

This evaluates to the expected value of a Gaussian(12y ,
1
2).

Thus, x̂(y) = E[X |Y = y ] = 1
2y . The mean square error is

e∗ = var[X |Y ] = 1
2 .
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Generalization: Bayesian estimation of a RV

Let’s do this for more general cost functions.

Define a non-negative cost function C (X , X̂ (Y )), e.g.

C (X , X̂ (Y )) =
(
X − X̂ (Y )

)2

Minimize expected costs: e = E[C (X , X̂ (Y ))]

Since both X and X̂ (Y ) are random variables, we can express e as

e =

∫ ∫
C (x , x̂(y)) fX ,Y (x , y) dxdy
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Bayesian estimation of a RV
Remember Bayes’ rule:

fX ,Y (x , y) = fX |Y (x |y) fY (y)

Using Bayes’ rule, we can write

e =

∫ ∫
C (x , x̂(y))fX |Y (x |y)dx︸ ︷︷ ︸

e(y)

fY (y)dy

Notice that

C (x , x̂(y)) ≥ 0,

fX |Y (x |y) ≥ 0,

fY (y) ≥ 0
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Bayesian estimation of a RV
We can simplify our problem:

To minimize e, it is sufficient to minimize

e(y) =

∫
C (x , x̂(y)) fX |Y (x |y) dx

for each realization (observation) y :

x̂(y) = arg min
x̂(y)

∫
C (x , x̂(y)) fX |Y (x |y) dx

For the MMSE cost function we find

de(y)

dx̂(y)
=

d

dx̂(y)

∫
(x − x̂(y))2fX |Y (x |y) dx

= −2

∫
(x − x̂(y)) fX |Y (x |y) dx

= 0
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Bayesian estimation of a RV

⇔
∫

x̂(y)fX |Y (x |y)dx =

∫
x fX |Y (x |y) dx

x̂(y)

∫
fX |Y (x |y)dx︸ ︷︷ ︸

1

= E[X |Y = y ]

The result is (again)

x̂MMSE(y) = E[X |Y = y ]

The optimal estimator under the squared error condition (the MMSE)
is the conditional expectation

What about other cost functions?
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Bayesian Estimation: MAP
Estimators that are derived using the uniform cost function are often
referred to as maximum a posteriori (MAP) estimators:

C (x , x̂(y)) =

{
0 |x − x̂(y)| < ε,

1 otherwise

Finding the MAP estimator:

min
x̂(y)

e(y) = min
x̂(y)

∫
C (x , x̂(y)) fX |Y (x |y) dx

= min
x̂(y)

∫
|x−x̂(y)|≥ε

fX |Y (x |y) dx

= min
x̂(y)

1−
∫
|x−x̂(y)|<ε

fX |Y (x |y) dx
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Maximum A Posteriori (MAP) Estimator
Because the integral is over an arbitrarily small region around x̂(y),
e(y) is minimized when the PDF fX |Y (x |y) is maximized;

x̂MAP(y) = arg max
x

fX |Y (x |y)

The MAP estimate x̂(y) is the value of x that maximizes the
conditional density fX |Y (x |y).

The name maximum a posteriori is derived from the fact that the
density fX |Y (x |y) is often called the posterior density.

Similarly, the blind estimator for this cost function is

x̂ = arg max
x

fX (x)

which is the mode of the PDF of X .
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Maximum Likelihood Estimator
Notice that

x̂(y) = arg max
x

fX |Y (x |y) = arg max
x

fY |X (y |x) fX (x)

fY (y)

= arg max
x

fY |X (y |x) fX (x)

If the prior fX (x) is non-informative (e.g., uniform over the whole region
of interest), we obtain

x̂(y) = arg max
x

fY |X (y |x)

which is known as the maximum likelihood estimate.

fY |X (y |x) regarded as a function of x is called a likelihood function

This estimator does not depend on the prior

ML and MAP are identical if the prior is constant (= uniform).
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Problem 12.3.4
Flip a coin n times. For each flip, the probability of heads is Q = q,
independent of all other flips. Q is a Uniform(0,1) random variable. K
is the number of heads in n flips.

What is the ML estimator of Q given K?

Given Q = q, the conditional PMF of K is (binomial)

PK |Q(k|q) =


(
n

k

)
qk(1− q)n−k k = 0, 1, · · · , n,

0 otherwise

The ML estimator of Q given K = k is

q̂ML(k) = arg max
0≤q≤1

PK |Q(k |q)
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Problem 12.3.4 (cont’d)
Differentiating PK |Q(k |q) with respect to q and setting equal to zero
yields

dPK |Q(k |q)

dq
=

(
n
k

)(
kqk−1(1− q)n−k − (n − k)qk(1− q)n−k−1

)
= 0

⇒ k(1− q) = (n − k)q

The maximizing value is q = k/n so that

Q̂ML(K ) =
K

n

This is intuitive: to estimate Q, simply count the relative frequency
of Heads.

Finding the MMSE is much harder!
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Linear MMSE estimation of a RV

Bayesian estimators:

MMSE: x̂(y) = E[X |Y = y ]

MAP: x̂(y) = arg max
x

fX |Y (x |y)

These estimators

are generally non-linear functions of the observations;

involve the posterior density fX |Y (x |y).

The non-linearity makes it sometimes difficult to derive and/or
implement these estimators.

Moreover, what if the density fX |Y (x |y) is unknown and cannot be
estimated from the data?
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Linear MMSE estimation of a RV
The Linear MMSE estimator constrains the estimator X̂lin to have a
linear relationship with the observable RV:

X̂lin(Y ) = aY + b

To find the constants a and b, we again minimize the MSE:

arg min
a,b

E[(X − X̂lin(Y ))2]

e = E[(X − X̂lin(Y ))2] = E[(X − aY − b)2]

Expanding gives:

e = E[X 2]− 2aE[XY ]− 2b E[X ] + a2E[Y 2] + 2ab E[Y ] + b2
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Linear MMSE estimation of a RV (cont’d)

The optimal parameters are found by setting partial derivatives to
zero:

∂e

∂a
= −2E[XY ] + 2aE[Y 2] + 2bE[Y ] = 0

∂e

∂b
= −2E[X ] + 2aE[Y ] + 2b = 0

Solving for a and b then leads to

a∗ =
cov[X ,Y ]

var[Y ]
= ρX ,Y

σX
σY

and b∗ = E[X ]− a∗E[Y ]
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Linear MMSE

The Linear MMSE estimator is

X̂lin(Y ) = a∗Y + b∗ =
cov[X ,Y ]

var[Y ]
Y + E[X ] − cov[X ,Y ]

var[Y ]
E[Y ]

=
cov[X ,Y ]

var[Y ]
(Y − E[Y ]) + E[X ]

We have seen a similar result for bivariate Gaussian variables.

This can be generalized to the case where we estimate a RV X from
a vector random process Y :

X̂lin(Y ) = CXY C−1Y (Y − E[Y ]) + E[X ]

and to the case where we estimate a vector random process X from
another vector random process Y :

X̂lin(Y ) = CXY C−1Y (Y − E[Y ]) + E[X ]
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Problem 12.4.2
X is a three-dimensional random vector with E[X ] = 0 and
autocorrelation matrix RX with elements rij = (−0.80)|i−j |.

Use X1 and X2 to form a linear estimate of X3: X̂3 = a1X1 + a2X2.

In this problem, we view Y = [X1 X2]T as the observation and X = X3

as the variable we wish to estimate. Then X̂lin(Y ) = RXY R−1Y Y where

RY = E[YY T ] =

[
E[X 2

1 ] E[X1X2]
E[X2X1] E[X 2

2

]
=

[
1 −0.8
−0.8 1

]
RXY = E[XY T ] = E[X3[X1 X2]] = [E[X1X3], E[X2X3]] = [0.64, −0.8]

RXY R−1Y = [0.64, −0.8]

[
25/9 20/9
20/9 25/9

]
= [0, −0.8]

The optimum linear estimator of X3 given X1 and X2 is

X̂3 = −0.8X2
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Estimation of a RV: summary

Minimum mean-squared error (MMSE) estimation:

Minimize E[(X − X̂ )2]

– Blind estimation (no observation): we can only use fX (x)

x̂ = E[X ], i.e., take the mean

– Estimation of X given a related variable Y :

X̂ (Y ) = arg min
X̂ (Y )

E[(X − X̂ )2 |Y ] = E[X |Y ]

Uses fX |Y (x |y) (inverse model)
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Estimation of a RV: summary

Uniform cost function:

Minimize C (X , X̂ ) =

{
0, |X − X̂ | < ε

1, otherwise

– Blind: x̂ = arg maxx fX (x), i.e., take the mode

– Maximum A Posteriori (MAP):

x̂(y) = arg max
x

fX |Y (x |y) = arg max
x

fY |X (y |x) · fX (x)

– Maximum Likelihood (ML): x̂(y) = arg maxx fY |X (y |x)

ignores fX (x)

In most estimation problems, ML is the standard choice.
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Estimation of a RV: summary

Special case:

Linear MMSE estimation: x̂(y) = ay + b; uses only second-order
statistics:

x̂(y) = a y + b =
cov[X ,Y ]

var[Y ]
(y − E[Y ]) + E[X ]
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Example

Let the joint density of X and Y be given by

fX ,Y (x , y) =

{
10x 0 ≤ x ≤ y2, 0 ≤ y ≤ 1

0 otherwise

We observe realizations of Y and want to estimate X .
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Example

First compute the marginals:

fY (y) =

∫ y2

0
10x dx = 5y4 , 0 ≤ y ≤ 1

fX (x) =

∫ 1

√
x

10x dy = 10(x − x3/2) , 0 ≤ x ≤ 1

Then the conditional densities are

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
=

10x

5y4
=

2x

y4
, 0 ≤ x ≤ y2

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
=

1

1−
√
x
,
√
x ≤ y ≤ 1

4. estimation 34 / 39



Example

MMSE: compute the conditional expectation:

x̂MMSE(y) = E [X |Y = y ] =

∫
x fX |Y (x |y) dx =

∫ y2

0

2x2

y4
dx =

2

3
y2

MAP: maximize the a posteriori density fX |Y (x |y):

x̂MAP(y) = arg max
x

fX |Y (x |y) = arg max
x

2x

y4
, 0 ≤ x ≤ y2

The maximum over x is achieved for x = y2, so x̂MAP(y) = y2.

ML: maximize the likelihood function fY |X (y |x).

As function of x , it is monotonically increasing, the maximum over x
is achieved for

√
x = y , so

x̂ML(y) = arg max
x

fY |X (y |x) = y2
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Example

Linear MMSE:

Compute the moments:

E[X ] =

∫ 1

0
x fX (x) dx = 10/21

E[Y ] =

∫ 1

0
y fY (y) dy = 5/6

E[Y 2] =

∫ 1

0
y2 fY (y) dy = 5/7

E[XY ] =

∫ 1

0

∫ y2

0
xy fX ,Y (x , y)dxdy = 10/24

Then

X̂lin(Y ) =
E[XY ]− E[X ]E[Y ]

E[Y 2]− E[Y ]2
(Y − E[Y ]) + E[X ]

= Y − 5/14
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Example
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Example
Estimation errors (MSE):

MMSE:

E[(X − X̂ (Y ))2] =

∫ 1

0

∫ y2

0

(
x − 2

3
y2
)2

10x dxdy = 0.0309

MAP, ML:

E[(X − X̂ (Y ))2] =

∫ 1

0

∫ y2

0
(x − y2)2 10x dxdy = 0.0926

LMMSE:

E[(X − X̂ (Y ))2] =

∫ 1

0

∫ y2

0

(
x − y +

5

14

)2

10x dxdy = 0.0312
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Some suggested exercises
Ch. 12: 12.1.3, 12.1.5, 12.2.1, 12.2.3, 12.2.5, 12.3.3, 12.4.3

Errata

Eqn (12.8): x is missing in the integral;
∫ r

0
x 1

r dx

Theorem 12.5: ”Discrete” repeated the definition. The new result is:

x̂MAP(yj) = arg max
x

PY |X (yj |x)PX (x)

(Some typos also two lines above Theorem 12.5)

Definition 12.2: ”MAP” should be ”ML”

Solution of Problem 12.1.5: above and below eqn (1), 0 ≤ y ≤ 1 (not ”2”);
eqn (4) gives the total MSE (averaging over Y ), but it was asked to give
the MSE for Y = 0.5.

Problem 12.1.7, above eqn (3): Z ≥ x − y (not ”≤”)

Problem 12.2.7: above (6): n = 2, not 1. In (6) and (7) also replace 1 by 2.

Solution of Problem 12.3.3: fR|N(r |n)dr should be
∫ r+dr

r
fR|N(r |n)dr
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