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Today

Given random variables X and Y . What is the PDF of W = X + Y ?

– Transformed RVs ⇒ for iid RVs, convolution of PDFs.

– Easier: Using moment generating functions (Laplace transform
of PDF)

Expected value and sample mean

– Expected value: E [X ] =
∫∞
−∞ x fX (x)dx .

– What if fX (x) is unknown? ⇒ use sample mean of X :

Mn(X ) =
X1 + · · ·+ Xn

n
.

– How good is Mn(X ) as an approximation of E[X ]?
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(Ch. 6.2) Derived random variables – continuous RVs

How can we compute the PDF of derived RVs Y = g(X ):

Special (simple) case: for linear transformations, we saw

– For scalars: Y = aX + b ⇔ fY (y) =
1

|a|
fX

(
y − b

a

)
– For vectors: Y = AX + b ⇔ fY (y) =

1

| det(A)|
fX
(
A−1 (y − b)

)
General approach, using CDFs:

(1) Find the CDF FX (x) = P[X ≤ x ]

(2) Transform to FY (y) = P[g(X ) ≤ y ]
?
= P[X ≤ g−1(y)]

This requires g−1(y) and a check on “≤”

(3) Compute the PDF by calculating fY (y) = dFY (y)
dy
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Problem 6.2.2
X is a Gaussian(0,1) random variable. Find the CDF of Y = |X |, and
its expected value E[Y ].

Since Y ≥ 0, FY (y) = 0 for y < 0. For y ≥ 0,

FY (y) = P[ |X | ≤ y ] = P[−y ≤ X ≤ y ] = Φ(y)− Φ(−y) = 2Φ(y)− 1

dFY (y)

dy
= 2fX (y) =

2√
2π

e−y
2/2

Thus, the complete expression is

fY (y) =

{
2√
2π
e−y

2/2 y ≥ 0

0 otherwise.

E[Y ] =

∫ ∞
−∞

y fY (y)dy =
2√
2π

∫ ∞
0

ye−y
2/2dy = −

√
2

π
e−y

2/2

∣∣∣∣∣
∞

0

=

√
2

π
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(Ch.6.5) PDF of the sum of two random variables

Special case: W = X + Y

fW (w) =

∫ ∞
−∞

fX ,Y (x ,w − x)dx =

∫ ∞
−∞

fX ,Y (w − y , y)dy

Proof:

FW (w) = P[X + Y ≤ w ] =

∫ ∞
−∞

(∫ w−x

−∞
fX ,Y (x , y)dy

)
dx

fW (w) =
dFW (w)

dw
=

∫ ∞
−∞

(
d

dw

(∫ w−x

−∞
fX ,Y (x , y)dy

))
dx

=

∫ ∞
−∞

fX ,Y (x ,w − x)dx

3. sums of rv’s; sample mean 5 / 45



Problem 6.5.2
X and Y have joint PDF

fX ,Y (x , y) =

{
2 x ≥ 0, y ≥ 0, x + y ≤ 1

0 otherwise

Find the PDF of W = X + Y .

Write fW (w) =

∫ ∞
−∞

fX ,Y (x ,w − x)dx .

For 0 ≤ w ≤ 1, fW (w) =

∫ w

0
2 dx = 2w .

For w < 0 or w > 1, fW (w) = 0 since 0 ≤W ≤ 1. The complete
expression is

fW (w) =

{
2w 0 ≤ w ≤ 1

0 otherwise
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Sum of two independent random variables

For independent RVs: fX ,Y (x , y) = fX (x) fY (y).

So, for two independent RVs X and Y we get

fW (w) =

∫ ∞
−∞

fX ,Y (x ,w − x)dx

=

∫ ∞
−∞

fX (x)fY (w − x)dx

The PDF of the sum of two independent RVs is the convolution of
the two PDFs. (Equivalent for discrete RVs.)
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Problem 6.5.5
Random variables X and Y are independent exponential random
variables with expected values E[X ] = 1/λ and E[Y ] = 1/µ.

If µ 6= λ, what is the PDF of W = X + Y ?

W = X + Y . Work out the convolution: (for λ 6= µ, x ≥ 0, y ≥ 0)

fX (w) =

∫ ∞
−∞

fX (x)fY (w − x)dx

=

∫ w

0
λe−λx µe−µ(w−x)dx since y = w − x ≥ 0⇒ x ≤ w

= λµ e−µw
∫ w

0
e−(λ−µ)xdx

=


λµ

λ− µ

(
e−µw − e−λw

)
w ≥ 0

0 otherwise
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Expected value of sums of random variables

Consider the sum W = X1 + X2 + · · ·+ Xn.

The expected value E[W ] is given by

E[W ] = E[X1] + E[X2] + · · ·+ E[Xn]

The variance of W is given by

var[W ] =
n∑

i=1

n∑
j=1

cov[Xi ,Xj ] =
n∑

i=1

var[Xi ] + 2
n−1∑
i=1

n∑
j=i+1

cov[Xi ,Xj ]

For uncorrelated variables we obtain var[W ] =
n∑

i=1

var[Xi ]
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(Ch. 9) PDF of the sum of independent random variables

What about the PDF of the sum of more independent variables?

For W = X + Y + Z (independent RVs)

fW (w) = fX (x) ∗ fY (y) ∗ fZ (z)

Calculating such convolutions is easier in frequency (or Laplace)
domain.

The Laplace transform of a PDF or MDF is called the Moment
Generating Function (MGF).
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Moment generating function

The moment generating function (MGF) is defined as the Laplace
transform of the PDF:

φX (s) :=

∫ ∞
−∞

fX (x) esxdx = E[esX ] , (s ∈ ROC)

Note the missing “−” sign on s: different convention than in S&S.
Also, s is limited to real values.

Nonetheless, the usual properties of Laplace transforms apply:

fW (w) = fX (x) ∗ fY (y) ⇔ φW (s) = φX (s) · φY (s)

For discrete RVs, this looks like a z-transform of the PMF (with z = es)
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Moment generating function: Properties
For continuous RVs:

φX (s) =

∫ ∞
−∞

fX (x) esxdx = E[esX ].

For discrete RVs:

φX (s) =
∑
xi∈Sx

PX (xi ) e
sxi = E[esX ].

φX (0) = E[e0] = 1

dφX (s)

ds
=

∫ ∞
−∞

x fX (x)esxdx ⇒ dφX (s)

ds

∣∣∣∣
s=0

= E[X ]

dnφX (s)

dsn

∣∣∣∣
s=0

= E[X n]
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Example (1)

Let X be exponentially distributed (e.g., duration of a phone call):

fX (x) =

{
0 x < 0

λe−λx x ≥ 0

What is the MGF φX (s)?

φX (s) = E[esx ] =

∫ ∞
−∞

esx fX (x)dx =

∫ ∞
0

esxλe−λxdx

=

∫ ∞
0

λe(s−λ)xdx =
λ

s − λ
e(s−λ)x

∣∣∣∣∞
0

Notice that integral only converges for s − λ ≤ 0 (as x ≥ 0).

The MGF is: φX (s) =
λ

λ− s
(ROC: s < λ)
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Example (2)

Let X be exponentially distributed. Calculating

E[X n] =

∫ ∞
0

xnfX (x)dx =

∫ ∞
0

xnλe−λxdx

requires n times partial integration!

The MGF of X is φX (s) = λ
λ−s , for s < λ

E[X ] = dφX (s)
ds

∣∣
s=0

= λ
(λ−s)2

∣∣
s=0

= 1
λ

E[X 2] = d2φX (s)
ds2

∣∣
s=0

= 2λ
(λ−s)3

∣∣
s=0

= 2
λ2

E[X n] = dnφX (s)
dsn

∣∣
s=0

= n!λ
(λ−s)n+1

∣∣
s=0

= n!
λn

Using MGFs, we only need to calculate n derivatives for E[X n].
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Problem 9.2.1
For a constant a > 0, a Laplace random variable X has PDF

fX (x) =
a

2
e−a|x |, −∞ < x <∞

Calculate the MGF φX (s).

φX (s) = E[esX ] =
a

2

∫ 0

−∞
esxeaxdx +

a

2

∫ ∞
0

esxe−axdx

=
a

2

e(s+a)x

s + a

∣∣∣∣∣
0

−∞

+
a

2

e(s−a)x

s − a

∣∣∣∣∣
∞

0

=
a2

a2 − s2

Check ROC: {s + a ≥ 0} ∩ {s − a ≤ 0} = {−a ≤ s ≤ a}.

The Laplace distribution has “fat tails” and is often used to model
noise that also has outliers
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Problem 9.2.2
Random variables J and K have the joint probability mass function

PJ,K (j , k k = −1k = 0k = 1Total
j = −2 0.42 0.12 0.06 0.6
j = −1 0.28 0.08 0.04 0.4
Total 0.7 0.2 0.1

Note: J and K are independent

(a) What is the MGF of J?

(b) What is the MGF of K?

(c) Find the PMF of M = J + K

(d) What is E[M4]?

φJ(s) = 0.6e−2s + 0.4e−s

φK (s) = 0.7e−s + 0.2 + 0.1es

φM(s) =φJ(s) · φK (s)
= 0.42e−3s + (0.28 + 0.12)e−s

+(0.06 + 0.08)e−s + 0.04
= 0.42e−3s + 0.4s−2s

+0.14e−s + 0.04

PM(m) =



0.42 m = −3

0.40 m = −2

0.14 m = −1

0.04 m = 0

0 otherwise
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Problem 9.2.2 (cont’d)

φM(s) = 0.42e−3s + 0.4s−2s + 0.14e−s + 0.04

d4φM(s)

ds4
= (−3)40.42e−3s + (−2)40.4e−2s + (−1)40.14e−s

E[M4] =
d4φM(s)

ds4

∣∣∣
s=0

= (−3)40.42 + (−2)40.4 + (−1)40.14 = 40.434

Compare to a direct calculation:

E[M4] =
∑
m

PM(m)m4

= 0.42(−3)4 + 0.4(−2)4 + 0.14(−1)4 + 0.04(0)4 = 40.434
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MGFs of standard distributions (Table 9.1/Appendix A)
Discrete RVs:

Bernoulli(p):

PX (x) =


1− p x = 0

p x = 1

0 otherwise

⇔ φX (s) = 1− p + pes

Binomial(n, p):

PX (x) =

(
n
x

)
px(1− p)n−x ⇔ φX (s) = (1− p + pes)n

Uniform(0,N − 1):

PX (x) =

{
1
N x = 0, · · · ,N − 1

0 otherwise
⇔ φX (s) =

1

N

1− esN

1− es
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MGFs of standard distributions (Table 9.1/Appendix A)
Continuous RVs:

Gaussian(µ, σ):

fX (x) =
e−(x−µ)

2/2σ2

σ
√

2π
⇔ φX (s) = esµ+σ

2s2/2

Exponential(λ):

fX (x) =

{
λe−λx x ≥ 0

0 otherwise
⇔ φX (x) =

λ

λ− s

Laplace(a):

fX (x) =
a

2
e−a|x | ⇔ φX (x) =

a2

a2 − s2
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Problem 9.2.4
Let X be a Gaussian(0, σ) random variable. Use the moment generating
function to show that

E[X ] = 0 , E[X 2] = σ2

E[X 3] = 0 , E[X 4] = 3σ4

Use Appendix A: φX (s) = eσ
2s2/2

E[X ] = σ2s eσ
2s2/2

∣∣
s=0

= 0

E[X 2] = σ2eσ
2s2/2 + σ4s2eσ

2s2/2
∣∣
s=0

= σ2

E[X 3] = (3σ4s + σ6s3)eσ
2s2/2

∣∣
s=0

= 0

E[X 4] = (3σ4 + 6σ6s2 + σ8s4)eσ
2s2/2

∣∣
s=0

= 3σ4
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MGF of linearly transformed RVs

The MGF of Y = aX + b is φY (s) = E[es(aX+b)] = esbφX (as)

The MGF for sums of RVs

The MGF of a sum of n independent RVs

W = X1 + · · ·+ Xn

is given by

φW (s) = E[esW ] = E
[
es

∑n
i=1 Xi

]
= E

[
n∏

i=1

esXi

]
=

n∏
i=1

φXi
(s)
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The sum of Gaussian RVs

Let X1,X2, · · · ,Xn denote a sequence of independent Gaussian RVs.

What is the distribution of W = X1 + X2 + · · ·+ Xn?

φW (s) = φX1(s)φX2(s) . . . φXn(s)

= esµ1+σ
2
1s

2/2 esµ2+σ
2
2s

2/2 · · · esµn+σ2
ns

2/2

= es(µ1+µ2+···+µn)+(σ2
1+σ

2
2+···+σ2

n)s
2/2

The distribution of a sum of independent Gaussians is again Gaussian
with mean µ1 + µ2 + · · ·+ µn and variance σ21 + σ22 + · · ·+ σ2n
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The Central Limit Theorem
Given a sequence of iid random variables X1,X2, . . . ,Xn, each with
expected value µX and variance σ2X .

Consider the standardized sum (i.e., normalized to mean 0, std 1):

Zn =

∑n
i=1 Xi − nµX√

nσ2X

The CDF of Zn then has the property:

lim
n→∞

FZn(z) = Φ(z).

This means: if n becomes “large”, the distribution of the sum of iid
random variables approaches a Gaussian distribution.

In practice, n does not have to be very large
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The Central Limit Theorem: illustration

Wn =
∑

n Xi , with Xi a Uniform(−1
2 ,

1
2) distribution
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Problem 9.4.9 — Use of CLT
Let Xi be Uniform(-1,1). Let Yi = 20 + 15X 2

i . Let W = 1
100

∑100
i=1 Yi .

Estimate P[W ≤ 25.4].

E[Xi ] = 0 , E[X 2
i ] =

1

3
, E[X 4

i ] =

∫ 1

−1

1

2
x4dx =

1

5

E[Yi ] = 20 + 15 E[X 2
i ] = 25

E[Y 2
i ] = 400 + 600 E[X 2

i ] + 225 E[X 4
i ] = 645

var[Yi ] = E[Y 2
i ]− (E[Yi ])

2 = 645− 625 = 20

E[W ] = E[Yi ] = 25

var[W ] =
1

100
var[Yi ] = 0.2

P[W ≤ 25.4] = E

[
W − 25√

0.2
≤ 25.4− 25√

0.2

]
= E[Z ≤ 0.8944] ≈ Φ(0.8944)

= 0.8145
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(Ch.10) The sample mean

The expected value is given by

E [X ] =

∫ ∞
−∞

x fX (x)dx .

What if fX (x) is unknown?

In practice, we estimate E[X ] by averaging independent observations
(data samples). But, this sample average is a RV!

Let X1, · · · ,Xn be n iid RVs with PDF fX (x) obtained from n repeated
independent trials of an experiment. The sample mean of X is then
given by the RV

Mn(X ) =
X1 + · · ·+ Xn

n
.
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Expected value and sample mean

Note:

E [X ] is a number (deterministic)

Mn(X ) = X1+···+Xn
n is a function of the RVs X1, · · · ,Xn.

Hence, Mn(X ) is also a RV.

This means we can talk about the expected value E[Mn(X )] and
variance var[Mn(X )].

Main question to answer: How well does Mn(X ) converge to E [X ] as a
function of n?
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Expected value and sample mean

Because X1, · · · ,XN are iid:

E [Mn(X )] = E

[
X1 + · · ·+ Xn

n

]
=

1

n
(E [X1] + · · ·+ E [Xn])

=
1

n
(E [X ] + · · ·+ E [X ]) = E[X ]

var [Mn(X )] =
1

n2
var [X1 + · · ·+ Xn] =

var [X1] + · · ·+ var [Xn]

n2

=
n var[X ]

n2
=

var[X ]

n
.

We conclude: as n→∞, Mn(X ) is arbitrarily close to E[X ].

Mn(X ) converges to E[X ]. What does this mean, exactly?

3. sums of rv’s; sample mean 28 / 45



Problem 10.1.1
X1, · · · ,Xn is an iid sequence of exponential random variables, each
with expected value 5.

(a) What is var[M9(X )], the variance of the sample mean based on 9
trials?

(b) What is P[X1 > 7], the probability that one outcome exceeds 7?

(c) Use the central limit theorem to estimate P[M9(X ) > 7], the
probability that the sample mean exceeds 7.

The Xi have µX = 5, σX = 5, FX (x) = 1− e−x/5.

(a) var[M9(X )] =
σ2X
9

=
25

9

(b) P[X1 > 7] = 1− P[X1 ≤ 7] = 1− FX (7) = e−7/5 ≈ 0.247

(c) P[M9(X ) > 7] = 1− P[M9 ≤ 7] = 1− P[M9−5
std ≤

7−5
std ] ≈

1− Φ( 2
5/3) ≈ 0.1151
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(c) P[M9(X ) > 7] = 1− P[M9 ≤ 7] = 1− P[M9−5
std ≤

7−5
std ] ≈

1− Φ( 2
5/3) ≈ 0.1151

3. sums of rv’s; sample mean 29 / 45



Deviation of a RV from its expected value
How well does Mn(X ) converge to E [X ]? Consider first:

What is the deviation of a RV X from its expected value: |X − E[X ]|?

Markov inequality: If X is nonnegative (P[X < 0] = 0)

P[X ≥ c2] ≤ E[X ]

c2 (often inaccurate)

Chebyshev inequality: For a RV X

P[ |X − E[X ]| ≥ c ] ≤ var[X ]

c2 (most often used)

Chernoff Bound:

P[X ≥ c] ≤ min
s≥0

e−scφX (s)
(need to know the PDF)

(P10.1.1) Chebyshev:
P[M9(X ) > 7] = P[M9(X )− 5 > 2] ≤ var[M9]/4 ≈ 0.6944
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Derivations

Markov inequality:

For constant c and a non-negative RV X (i.e., P[X < 0] = 0)

E[X ] =

∫ ∞
0

x fX (x)dx =

∫ c2

0
x fX (x)dx +

∫ ∞
c2

x fX (x)dx

≥
∫ ∞
c2

x fX (x)dx

≥ c2
∫ ∞
c2

fX (x)dx since x ≥ c2

⇒ P[X ≥ c2] ≤ E[X ]

c2
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Derivations (cont’d)
Chebyshev inequality:

Using the Markov inequality

P[X ≥ c2] ≤ E[X ]

c2
.

Let X = |Y − E[Y ]|2. The Markov inequality then says:

P[X ≥ c2] = P[|Y − E[Y ]|2 ≥ c2] ≤ E[|Y − E[Y ]|2]

c2
=

var[Y ]

c2
.

As P[|Y − E[Y ]|2 ≥ c2] = P[|Y − E[Y ]| ≥ c], we obtain

P[|Y − E[Y ]| ≥ c] ≤ var[Y ]

c2

which is the Chebyshev inequality
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Derivations (cont’d)
Chernoff bound:

P[X ≥ c] =

∫ ∞
c

fX (x)dx =

∫ ∞
−∞

u(x − c) fX (x)dx

where u(x) is the unit step function.

Since u(x − c) ≤ es(x−c) for all s ≥ 0, then

P[X ≥ c] ≤
∫ ∞
−∞

es(x−c)fX (x)dx = e−sc
∫ ∞
−∞

esx fX (x)dx = e−scφX (s)

with φX (s) the moment generating function of X , and any s ≥ 0.

To obtain the bound, we can select the s that minimizes e−scφX (s).

The Chernoff bound is then given by

P[X ≥ c] ≤ min
s≥0

e−scφX (s).
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Problem 10.2.6
Use the Chernoff bound to show that the Gaussian(0,1) random variable
Z satisfies P[Z ≥ c] ≤ e−c

2/2.

The N[0, 1] random variable Z has MGF φZ (s) = es
2/2. Hence the

Chernoff bound for Z is

P[Z ≥ c] ≤ min
s≥0

e−sces
2/2 = min

s≥0
es

2/2−sc

We can minimize es
2/2−sc by minimizing the exponent s2/2− sc . By

setting
d

ds
(s2/2− sc) = s − c = 0

we obtain s = c . At s = c , the upper bound is P[Z ≥ c] ≤ e−c
2/2.

c = 1 c = 2 c = 3 c = 4 c = 5

Chernoff bound 0.606 0.135 0.011 3.35× 10−4 3.73× 10−6

Q(c) 0.159 0.023 0.0013 3.17× 10−5 2.87× 10−7
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Going back to the sample mean...

How well does the sample mean Mn(X ) = 1
n

∑n
i=1 Xi converge to E [X ]?

Chebyshev inequality applied to Mn(X ):

P[ |Mn(X )− E[X ]| ≥ c ] = P[ |Mn(X )− E[Mn(X )]| ≥ c ]

≤ var[Mn(X )]

c2
=

var[X ]

n c2

This is also known as the (weak) law of large numbers:

The probability that the sample mean Mn(X ) is more than c units
away from E[X ] can be made arbitrarily small by making n large
enough.

This is called convergence in probability (almost sure, a.s.)
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Problem 10.3.2
Event A has probability P[A] = 0.8. Let P̂n(A) denote the relative
frequency of event A in n independent trials.
Let XA denote the indicator random variable for event A.

(a) Find E[XA] and var[XA].

(b) What is var[P̂n(A)].

(c) Use the Chebyshev inequality to find the confidence coefficient
1− α such that P̂100(A) is within 0.1 of P[A].
I.e., find α such that P[|P̂100(A)− P[A]| ≤ 0.1] ≥ 1− α.

(a) Since XA is a Bernoulli(p = P[A]) random variable,

E[XA] = P[A] = 0.8 , var[XA] = P[A] (1− P[A]) = 0.16

(b) P̂n(A) = Mn(XA) = 1
n

∑n
i=1 XA,i

var[P̂n(A)] = 1
n2
∑n

i=1 var[XA,i ] = P[A](1−P[A])
n
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Problem 10.3.2 (cont’d)

(c) Since P̂100(A) = M100(XA), we can use the Chebyshev inequality to
write

P[|P̂100(A)− P[A]| < c] ≥ 1− var[XA]

100c2

= 1− 0.16

100c2
= 1− α

For c = 0.1, α = 0.16/[100(0.1)2] = 0.16. Thus, with 100
samples, our confidence coefficient is 1− α = 0.84.
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Quality of an estimator

The sample mean Mn(X ) = 1
n

∑n
i=1 Xi is one example of estimating a

model parameter (here, r = E[X ]) describing a statistical model.

Also other parameters of a probability model, e.g., the higher order
moments E[X 2], E[X 3], · · · ,E[X n], can be estimated by sample
averages.

How to express whether an estimator R̂ of a model parameter r is good?

Bias

Consistency

Accuracy (e.g., mean square error)
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Unbiased estimator
An estimate R̂ of a parameter r is unbiased if E[R̂] = r .

Let R̂n be an estimator of r using observations X1,X2, · · · ,Xn.

The sequence of estimators R̂n of a parameter r is asymptotically
unbiased if

lim
n→∞

E[R̂n] = r

Consistent estimator

The sequence of estimates R̂1, R̂2, · · · of parameter r is consistent if
for any ε > 0

lim
n→∞

P
[∣∣∣R̂n − r

∣∣∣ ≥ ε] = 0

I.e., the sequence of estimates R̂1, R̂2, · · · converges in probability.

Necessary: (asymptotically) unbiased. What else is needed?
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Mean square error
The mean square error of an estimator R̂ of a parameter r is

e = E[(R̂ − r)2]

When R̂ is unbiased, E[R̂] = r , then

e = E[(R̂ − r)2] = E[(R̂ − E[R̂])2] = var[R̂]

Relation MSE, bias and variance

Let b = E[R̂]− r and V = R̂ − E[R̂], so that E[V ] = 0.

e = E[(R̂ − r)2] = E[(R̂ − E[R̂] + E[R̂]− r)2]

= E[(V + b)2] = E[V 2] + 2E[V ]b + b2

= E[V 2]︸ ︷︷ ︸
variance

+ b2︸︷︷︸
bias-squared
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Mean square error – Theorem 10.8

Theorem: If a sequence of unbiased estimators R̂1, R̂2, · · · of
parameter r has a MSE en = var[R̂n] with limn→∞ en = 0, then the
sequence is consistent.

Proof:

This follows directly from the Chebyshev inequality:

P
[∣∣∣R̂n − r

∣∣∣ ≥ ε] ≤ var[R̂n]

ε2

Applying Chebyshev for n→∞:

lim
n→∞

P
[∣∣∣R̂n − r

∣∣∣ ≥ ε] ≤ lim
n→∞

var[R̂n]

ε2
= 0
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Example
Let Nk be the number of packets per interval of k seconds passing
through a router. Assume Nk is Poisson distributed with E[Nk ] = kr .

Let R̂k = Nk/k denote an estimator of the parameter r (number of
packets/sec).

(a) Is R̂k unbiased?

(b) What is the mean square error of R̂k?

(c) Is the sequence R̂1, R̂2, · · · consistent?

(a) E[R̂k ] = E[Nk/k] = E[Nk ]/k = r . Yes, unbiased.

(b) Poisson distributed, so var[Nk ] = kr ,

var[R̂k ] = var[Nk/k] = var[Nk ]/k2 = r/k

Unbiased, so the MSE is ek = E[(R̂k − r)2] = var[R̂k ] = r/k .

(c) limk→∞ ek = limk→∞ r/k = 0, thus consistent according to
Theorem 10.8.
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Mean square error – Theorem 10.9, 10.11

The sample mean Mn(X ) is an unbiased and consistent estimator of
E[X ] (if X has finite variance)

The sample variance Vn(X ) is biased (but asymptotically unbiased).

Vn(X ) =
1

n

n∑
i=1

(Xi −Mn(X ))2

The bias happens because Mn(X ) also depends on Xi . But

V ′n(X ) =
1

n − 1

n∑
i=1

(Xi −Mn(X ))2

is an unbiased estimate of var[X ].
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Problem 10.4.1

An experimental trial produces random variables X1 and X2 with
correlation r = E[X1X2]. To estimate r , we perform n independent trials
and form the estimate

R̂n =
1

n

n∑
i=1

X1(i)X2(i) ,

where X1(i) and X2(i) are samples of X1 and X2 on trial i .
Show that if var[X1X2] is finite, then R̂1, R̂2, · · · is an unbiased,
consistent sequence of estimates of r .

Let Y = X1X2, and for the ith trial, let Yi = X1(i)X2(i).
Then R̂n = Mn(Y ), the sample mean of random variable Y . By
Theorem 10.9, Mn(Y ) is unbiased.

Since var[Y ] = var[X1X2] <∞, Theorem 10.11 tells us that Mn(Y ) is a
consistent sequence.
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To do for this lecture:

Read chapter 6.2, 6.5, 9 and 10

Make some of the indicated exercises:
6.2.1, 6.2.5, 6.2.7, 9.2.1, 9.2.3, 9.3.3, 9.3.5, 9.3.7,
10.2.1, 10.2.3, 10.2.5, 10.3.1
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