EE2S31 Signal Processing - Stochastic Processes
 Lecture 3: Sums of RVs \& The Sample Mean
 - Chs. 6, 9 \& 10

Alle-Jan van der Veen

2 May 2022

Today

■ Given random variables X and Y. What is the PDF of $W=X+Y$?

- Transformed RVs \Rightarrow for iid RVs, convolution of PDFs.
- Easier: Using moment generating functions (Laplace transform of PDF)

■ Expected value and sample mean

- Expected value: $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x$.
- What if $f_{X}(x)$ is unknown? \Rightarrow use sample mean of X :

$$
M_{n}(X)=\frac{X_{1}+\cdots+X_{n}}{n}
$$

- How good is $M_{n}(X)$ as an approximation of $\mathrm{E}[X]$?

(Ch. 6.2) Derived random variables - continuous RVs

How can we compute the PDF of derived RVs $\boldsymbol{Y}=g(\boldsymbol{X})$:

- Special (simple) case: for linear transformations, we saw
- For scalars: $Y=a X+b \Leftrightarrow f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)$
- For vectors: $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b} \Leftrightarrow f_{\boldsymbol{Y}}(\boldsymbol{y})=\frac{1}{|\operatorname{det}(\boldsymbol{A})|} f_{X}\left(\boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})\right)$
- General approach, using CDFs:
(1) Find the CDF $F_{\boldsymbol{X}}(x)=\mathrm{P}[\boldsymbol{X} \leq \boldsymbol{x}]$
(2) Transform to $F_{\boldsymbol{Y}}(\boldsymbol{y})=\mathrm{P}[g(\boldsymbol{X}) \leq \boldsymbol{y}] \stackrel{?}{=} \mathrm{P}\left[\boldsymbol{X} \leq g^{-1}(\boldsymbol{y})\right]$

This requires $g^{-1}(\boldsymbol{y})$ and a check on " \leq "
(3) Compute the PDF by calculating $f_{Y}(y)=\frac{\mathrm{d} F_{Y}(y)}{\mathrm{d} y}$

Problem 6.2.2

X is a $\operatorname{Gaussian}(0,1)$ random variable. Find the CDF of $Y=|X|$, and its expected value $\mathrm{E}[Y]$.

Since $Y \geq 0, F_{Y}(y)=0$ for $y<0$. For $y \geq 0$,

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}[|X| \leq y]=\mathrm{P}[-y \leq X \leq y]=\Phi(y)-\Phi(-y)=2 \Phi(y)-1 \\
\frac{\mathrm{~d} F_{Y}(y)}{\mathrm{d} y} & =2 f_{X}(y)=\frac{2}{\sqrt{2 \pi}} e^{-y^{2} / 2}
\end{aligned}
$$

Thus, the complete expression is

$$
\begin{gathered}
f_{Y}(y)= \begin{cases}\frac{2}{\sqrt{2 \pi}} e^{-y^{2} / 2} & y \geq 0 \\
0 & \text { otherwise. }\end{cases} \\
\mathrm{E}[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} y e^{-y^{2} / 2} d y=-\left.\sqrt{\frac{2}{\pi}} e^{-y^{2} / 2}\right|_{0} ^{\infty}=\sqrt{\frac{2}{\pi}}
\end{gathered}
$$

(Ch.6.5) PDF of the sum of two random variables

Special case: $W=X+Y$

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X, Y}(x, w-x) \mathrm{d} x=\int_{-\infty}^{\infty} f_{X, Y}(w-y, y) \mathrm{d} y
$$

Proof:

$$
\begin{aligned}
F_{W}(w)=\mathrm{P}[X+Y \leq w] & =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{w-x} f_{X, Y}(x, y) \mathrm{d} y\right) \mathrm{d} x \\
f_{W}(w)=\frac{\mathrm{d} F_{W}(w)}{\mathrm{d} w} & =\int_{-\infty}^{\infty}\left(\frac{\mathrm{d}}{\mathrm{~d} w}\left(\int_{-\infty}^{w-x} f_{X, Y}(x, y) \mathrm{d} y\right)\right) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} f_{X, Y}(x, w-x) \mathrm{d} x
\end{aligned}
$$

Problem 6.5.2

X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}2 & x \geq 0, y \geq 0, x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the PDF of $W=X+Y$.

Write $f_{W}(w)=\int_{-\infty}^{\infty} f_{X, Y}(x, w-x) \mathrm{d} x$.
For $0 \leq w \leq 1, f_{W}(w)=\int_{0}^{w} 2 \mathrm{~d} x=2 w$.
For $w<0$ or $w>1, f_{W}(w)=0$ since $0 \leq W \leq 1$. The complete expression is

$$
f_{W}(w)= \begin{cases}2 w & 0 \leq w \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Sum of two independent random variables

For independent RVs: $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$.
So, for two independent $\mathrm{RVs} X$ and Y we get

$$
\begin{aligned}
f_{W}(w) & =\int_{-\infty}^{\infty} f_{X, Y}(x, w-x) \mathrm{d} x \\
& =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) \mathrm{d} x
\end{aligned}
$$

- The PDF of the sum of two independent RVs is the convolution of the two PDFs. (Equivalent for discrete RVs.)

Problem 6.5.5

Random variables X and Y are independent exponential random variables with expected values $\mathrm{E}[X]=1 / \lambda$ and $\mathrm{E}[Y]=1 / \mu$.
If $\mu \neq \lambda$, what is the PDF of $W=X+Y$?

Problem 6.5.5

Random variables X and Y are independent exponential random variables with expected values $\mathrm{E}[X]=1 / \lambda$ and $\mathrm{E}[Y]=1 / \mu$.
If $\mu \neq \lambda$, what is the PDF of $W=X+Y$?
$W=X+Y$. Work out the convolution: (for $\lambda \neq \mu, x \geq 0, y \geq 0)$

$$
\begin{aligned}
f_{X}(w) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) \mathrm{d} x \\
& =\int_{0}^{w} \lambda e^{-\lambda x} \mu e^{-\mu(w-x)} \mathrm{d} x \quad \text { since } y=w-x \geq 0 \Rightarrow x \leq w \\
& =\lambda \mu e^{-\mu w} \int_{0}^{w} e^{-(\lambda-\mu) x} \mathrm{~d} x \\
& = \begin{cases}\frac{\lambda \mu}{\lambda-\mu}\left(e^{-\mu w}-e^{-\lambda w}\right) & w \geq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Expected value of sums of random variables

Consider the sum $W=X_{1}+X_{2}+\cdots+X_{n}$.

- The expected value $E[W]$ is given by

$$
\mathrm{E}[W]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]
$$

- The variance of W is given by

$$
\operatorname{var}[W]=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}\left[X_{i}, X_{j}\right]=\sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{cov}\left[X_{i}, X_{j}\right]
$$

For uncorrelated variables we obtain $\operatorname{var}[W]=\sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]$

(Ch. 9) PDF of the sum of independent random variables

What about the PDF of the sum of more independent variables?
For $W=X+Y+Z$ (independent RV s)

$$
f_{W}(w)=f_{X}(x) * f_{Y}(y) * f_{Z}(z)
$$

■ Calculating such convolutions is easier in frequency (or Laplace) domain.

- The Laplace transform of a PDF or MDF is called the Moment Generating Function (MGF).

Moment generating function

The moment generating function (MGF) is defined as the Laplace transform of the PDF:

$$
\phi_{X}(s):=\int_{-\infty}^{\infty} f_{X}(x) e^{s x} \mathrm{~d} x=\mathrm{E}\left[e^{s X}\right], \quad(s \in \mathrm{ROC})
$$

- Note the missing "-" sign on s: different convention than in S\&S. Also, s is limited to real values.

■ Nonetheless, the usual properties of Laplace transforms apply:

$$
f_{W}(w)=f_{X}(x) * f_{Y}(y) \quad \Leftrightarrow \quad \phi_{W}(s)=\phi_{X}(s) \cdot \phi_{Y}(s)
$$

For discrete RVs, this looks like a z-transform of the PMF (with $z=e^{s}$)

Moment generating function: Properties

For continuous RVs:

$$
\phi_{X}(s)=\int_{-\infty}^{\infty} f_{X}(x) e^{s x} \mathrm{~d} x=\mathrm{E}\left[e^{s X}\right]
$$

For discrete RVs :

$$
\phi_{X}(s)=\sum_{x_{i} \in S_{X}} P_{X}\left(x_{i}\right) e^{s X_{i}}=\mathrm{E}\left[e^{s X}\right]
$$

- $\phi_{X}(0)=\mathrm{E}\left[e^{0}\right]=1$

■ $\frac{\mathrm{d} \phi_{X}(s)}{\mathrm{d} s}=\left.\int_{-\infty}^{\infty} x f_{X}(x) e^{s x} \mathrm{~d} x \Rightarrow \frac{\mathrm{~d} \phi x(s)}{\mathrm{d} s}\right|_{s=0}=\mathrm{E}[X]$

- $\left.\frac{\mathrm{d}^{n} \phi X(s)}{\mathrm{d} s^{n}}\right|_{s=0}=\mathrm{E}\left[X^{n}\right]$

Example (1)

Let X be exponentially distributed (e.g., duration of a phone call):

$$
f_{X}(x)= \begin{cases}0 & x<0 \\ \lambda e^{-\lambda x} & x \geq 0\end{cases}
$$

What is the MGF $\phi_{X}(s)$?

Example (1)

Let X be exponentially distributed (e.g., duration of a phone call):

$$
f_{X}(x)= \begin{cases}0 & x<0 \\ \lambda e^{-\lambda x} & x \geq 0\end{cases}
$$

What is the MGF $\phi_{X}(s)$?

$$
\begin{aligned}
\phi_{X}(s) & =\mathrm{E}\left[e^{s x}\right]=\int_{-\infty}^{\infty} e^{s x} f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} e^{s x} \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\int_{0}^{\infty} \lambda e^{(s-\lambda) x} \mathrm{~d} x=\left.\frac{\lambda}{s-\lambda} e^{(s-\lambda) x}\right|_{0} ^{\infty}
\end{aligned}
$$

Notice that integral only converges for $s-\lambda \leq 0($ as $x \geq 0)$.
The MGF is: $\phi_{X}(s)=\frac{\lambda}{\lambda-s} \quad($ ROC $: s<\lambda)$

Example (2)

Let X be exponentially distributed. Calculating

$$
\mathrm{E}\left[X^{n}\right]=\int_{0}^{\infty} x^{n} f_{X}(x) \mathrm{d} x=\int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} \mathrm{~d} x
$$

requires n times partial integration!
The MGF of X is $\phi_{X}(s)=\frac{\lambda}{\lambda-s}$, for $s<\lambda$
$■ E[X]=\left.\frac{\mathrm{d} \phi_{X}(s)}{\mathrm{d} s}\right|_{s=0}=\left.\frac{\lambda}{(\lambda-s)^{2}}\right|_{s=0}=\frac{1}{\lambda}$
$■ E\left[X^{2}\right]=\left.\frac{\mathrm{d}^{2} \phi X(s)}{\mathrm{d} s^{2}}\right|_{s=0}=\left.\frac{2 \lambda}{(\lambda-s)^{3}}\right|_{s=0}=\frac{2}{\lambda^{2}}$

- $\mathrm{E}\left[X^{n}\right]=\left.\frac{\mathrm{d}^{n} \phi X(s)}{\mathrm{d} s^{n}}\right|_{s=0}=\left.\frac{n!\lambda}{(\lambda-s)^{n+1}}\right|_{s=0}=\frac{n!}{\lambda^{n}}$

Using MGFs, we only need to calculate n derivatives for $\mathrm{E}\left[X^{n}\right]$.

Problem 9.2.1

For a constant $a>0$, a Laplace random variable X has PDF

$$
f_{X}(x)=\frac{a}{2} e^{-a|x|}, \quad-\infty<x<\infty
$$

Calculate the MGF $\phi_{X}(s)$.

Problem 9.2.1

For a constant $a>0$, a Laplace random variable X has PDF

$$
f_{X}(x)=\frac{a}{2} e^{-a|x|}, \quad-\infty<x<\infty
$$

Calculate the MGF $\phi_{X}(s)$.

$$
\begin{aligned}
\phi_{X}(s) & =\mathrm{E}\left[e^{s X}\right]=\frac{a}{2} \int_{-\infty}^{0} e^{s x} e^{a x} \mathrm{~d} x+\frac{a}{2} \int_{0}^{\infty} e^{s x} e^{-a x} \mathrm{~d} x \\
& =\left.\frac{a}{2} \frac{e^{(s+a) x}}{s+a}\right|_{-\infty} ^{0}+\left.\frac{a}{2} \frac{e^{(s-a) x}}{s-a}\right|_{0} ^{\infty} \\
& =\frac{a^{2}}{a^{2}-s^{2}}
\end{aligned}
$$

Check ROC: $\{s+a \geq 0\} \cap\{s-a \leq 0\}=\{-a \leq s \leq a\}$.

- The Laplace distribution has "fat tails" and is often used to model noise that also has outliers

Problem 9.2.2

Random variables J and K have the joint probability mass function

$P_{J, K}(j, k \mid k=$	$-1 k=0 k=1$	Total		
$j=-2$	0.42	0.12	0.06	0.6
$j=-1$	0.28	0.08	0.04	0.4
Total	0.7	0.2	0.1	

Note: J and K are independent
(a) What is the MGF of J ?
(b) What is the MGF of K ?
(c) Find the PMF of $M=J+K$
(d) What is $\mathrm{E}\left[M^{4}\right]$?

Problem 9.2.2

Random variables J and K have the joint probability mass function

$$
\begin{aligned}
\phi_{J}(s)= & 0.6 e^{-2 s}+0.4 e^{-s} \\
\phi_{K}(s)= & 0.7 e^{-s}+0.2+0.1 e^{s} \\
\phi_{M}(s)= & \phi_{J}(s) \cdot \phi_{K}(s) \\
= & 0.42 e^{-3 s}+(0.28+0.12) e^{-s} \\
& +(0.06+0.08) e^{-s}+0.04 \\
= & 0.42 e^{-3 s}+0.4 s^{-2 s} \\
& +0.14 e^{-s}+0.04
\end{aligned}
$$

(a) What is the MGF of J ?
(b) What is the MGF of K ?
(c) Find the PMF of $M=J+K$

$$
P_{M}(m)= \begin{cases}0.42 & m=-3 \\ 0.40 & m=-2 \\ 0.14 & m=-1 \\ 0.04 & m=0 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 9.2.2 (cont'd)

$$
\phi_{M}(s)=0.42 e^{-3 s}+0.4 s^{-2 s}+0.14 e^{-s}+0.04
$$

$$
\begin{aligned}
\frac{\mathrm{d}^{4} \phi_{M}(s)}{\mathrm{d} s^{4}} & =(-3)^{4} 0.42 e^{-3 s}+(-2)^{4} 0.4 e^{-2 s}+(-1)^{4} 0.14 e^{-s} \\
E\left[M^{4}\right] & =\left.\frac{\mathrm{d}^{4} \phi_{M}(s)}{\mathrm{d} s^{4}}\right|_{s=0} \\
& =(-3)^{4} 0.42+(-2)^{4} 0.4+(-1)^{4} 0.14=40.434
\end{aligned}
$$

Compare to a direct calculation:

$$
\begin{aligned}
\mathrm{E}\left[M^{4}\right] & =\sum_{m} P_{M}(m) m^{4} \\
& =0.42(-3)^{4}+0.4(-2)^{4}+0.14(-1)^{4}+0.04(0)^{4}=40.434
\end{aligned}
$$

MGFs of standard distributions (Table 9.1/Appendix A)

Discrete RVs:

- Bernoulli(p):

$$
P_{X}(x)=\left\{\begin{array}{ll}
1-p & x=0 \\
p & x=1 \\
0 & \text { otherwise }
\end{array} \quad \Leftrightarrow \quad \phi_{X}(s)=1-p+p e^{s}\right.
$$

- Binomial (n, p) :

$$
P_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \Leftrightarrow \quad \phi_{X}(s)=\left(1-p+p e^{s}\right)^{n}
$$

- Uniform $(0, N-1)$:

$$
P_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{N} & x=0, \cdots, N-1 \\
0 & \text { otherwise }
\end{array} \quad \Leftrightarrow \quad \phi_{X}(s)=\frac{1}{N} \frac{1-e^{s N}}{1-e^{s}}\right.
$$

MGFs of standard distributions (Table 9.1/Appendix A)

Continuous RVs:

- Gaussian (μ, σ) :

$$
f_{X}(x)=\frac{e^{-(x-\mu)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}} \quad \Leftrightarrow \quad \phi_{X}(s)=e^{s \mu+\sigma^{2} s^{2} / 2}
$$

- Exponential (λ) :

$$
f_{X}(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \Leftrightarrow \quad \Leftrightarrow \quad \phi_{X}(x)=\frac{\lambda}{\lambda-s}\right.
$$

■ Laplace(a):

$$
f_{X}(x)=\frac{a}{2} e^{-a|x|} \quad \Leftrightarrow \quad \phi_{X}(x)=\frac{a^{2}}{a^{2}-s^{2}}
$$

Problem 9.2.4

Let X be a Gaussian $(0, \sigma)$ random variable. Use the moment generating function to show that

$$
\begin{array}{ll}
\mathrm{E}[X]=0, & \mathrm{E}\left[X^{2}\right]=\sigma^{2} \\
\mathrm{E}\left[X^{3}\right]=0, & \mathrm{E}\left[X^{4}\right]=3 \sigma^{4}
\end{array}
$$

Use Appendix A: $\phi_{X}(s)=e^{\sigma^{2} s^{2} / 2}$

$$
\begin{aligned}
\mathrm{E}[X] & =\left.\sigma^{2} s e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \\
\mathrm{E}\left[X^{2}\right] & =\sigma^{2} e^{\sigma^{2} s^{2} / 2}+\left.\sigma^{4} s^{2} e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=\sigma^{2} \\
\mathrm{E}\left[X^{3}\right] & =\left.\left(3 \sigma^{4} s+\sigma^{6} s^{3}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=0 \\
\mathrm{E}\left[X^{4}\right] & =\left.\left(3 \sigma^{4}+6 \sigma^{6} s^{2}+\sigma^{8} s^{4}\right) e^{\sigma^{2} s^{2} / 2}\right|_{s=0}=3 \sigma^{4}
\end{aligned}
$$

MGF of linearly transformed RVs

The MGF of $Y=a X+b$ is $\phi_{Y}(s)=\mathrm{E}\left[e^{s(a X+b)}\right]=e^{s b} \phi_{X}(a s)$

The MGF for sums of RVs

The MGF of a sum of n independent RVs

$$
W=X_{1}+\cdots+X_{n}
$$

is given by

$$
\phi_{W}(s)=\mathrm{E}\left[e^{s W}\right]=\mathrm{E}\left[e^{s \sum_{i=1}^{n} X_{i}}\right]=\mathrm{E}\left[\prod_{i=1}^{n} e^{s X_{i}}\right]=\prod_{i=1}^{n} \phi_{X_{i}}(s)
$$

The sum of Gaussian RVs

Let $X_{1}, X_{2}, \cdots, X_{n}$ denote a sequence of independent Gaussian RVs.
What is the distribution of $W=X_{1}+X_{2}+\cdots+X_{n}$?

$$
\begin{aligned}
\phi_{W}(s) & =\phi_{X_{1}}(s) \phi_{X_{2}}(s) \ldots \phi_{X_{n}}(s) \\
& =e^{s \mu_{1}+\sigma_{1}^{2} s^{2} / 2} e^{s \mu_{2}+\sigma_{2}^{2} s^{2} / 2} \cdots e^{s \mu_{n}+\sigma_{n}^{2} s^{2} / 2} \\
& =e^{s\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)+\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}\right) s^{2} / 2}
\end{aligned}
$$

- The distribution of a sum of independent Gaussians is again Gaussian with mean $\mu_{1}+\mu_{2}+\cdots+\mu_{n}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}$

The Central Limit Theorem

Given a sequence of iid random variables $X_{1}, X_{2}, \ldots, X_{n}$, each with expected value μ_{X} and variance σ_{X}^{2}.

Consider the standardized sum (i.e., normalized to mean 0 , std 1):

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu_{X}}{\sqrt{n \sigma_{X}^{2}}}
$$

The CDF of Z_{n} then has the property:

$$
\lim _{n \rightarrow \infty} F_{Z_{n}}(z)=\Phi(z)
$$

■ This means: if n becomes "large", the distribution of the sum of iid random variables approaches a Gaussian distribution.

- In practice, n does not have to be very large

The Central Limit Theorem: illustration
$W_{n}=\sum_{n} X_{i}$, with X_{i} a Uniform $\left(-\frac{1}{2}, \frac{1}{2}\right)$ distribution

Problem 9.4.9 - Use of CLT
 Let X_{i} be Uniform(-1,1). Let $Y_{i}=20+15 X_{i}^{2}$. Let $W=\frac{1}{100} \sum_{i=1}^{100} Y_{i}$.

Estimate $\mathrm{P}[W \leq 25.4]$.

Problem 9.4.9 - Use of CLT

Let X_{i} be Uniform $(-1,1)$. Let $Y_{i}=20+15 X_{i}^{2}$. Let $W=\frac{1}{100} \sum_{i=1}^{100} Y_{i}$.
Estimate $\mathrm{P}[W \leq 25.4]$.

$$
\begin{aligned}
\mathrm{E}\left[X_{i}\right] & =0, \quad \mathrm{E}\left[X_{i}^{2}\right]=\frac{1}{3}, \quad \mathrm{E}\left[X_{i}^{4}\right]=\int_{-1}^{1} \frac{1}{2} x^{4} d x=\frac{1}{5} \\
\mathrm{E}\left[Y_{i}\right] & =20+15 \mathrm{E}\left[X_{i}^{2}\right]=25 \\
\mathrm{E}\left[Y_{i}^{2}\right] & =400+600 \mathrm{E}\left[X_{i}^{2}\right]+225 \mathrm{E}\left[X_{i}^{4}\right]=645 \\
\operatorname{var}\left[Y_{i}\right] & =\mathrm{E}\left[Y_{i}^{2}\right]-\left(\mathrm{E}\left[Y_{i}\right]\right)^{2}=645-625=20 \\
\mathrm{E}[W] & =\mathrm{E}\left[Y_{i}\right]=25 \\
\operatorname{var}[W] & =\frac{1}{100} \operatorname{var}\left[Y_{i}\right]=0.2 \\
\mathrm{P}[W \leq 25.4] & =\mathrm{E}\left[\frac{W-25}{\sqrt{0.2}} \leq \frac{25.4-25}{\sqrt{0.2}}\right]=\mathrm{E}[Z \leq 0.8944] \approx \Phi(0.8944) \\
& =0.8145
\end{aligned}
$$

(Ch.10) The sample mean

The expected value is given by

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

What if $f_{X}(x)$ is unknown?

- In practice, we estimate $\mathrm{E}[X]$ by averaging independent observations (data samples). But, this sample average is a RV!

(Ch.10) The sample mean

The expected value is given by

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

What if $f_{X}(x)$ is unknown?

- In practice, we estimate $\mathrm{E}[X]$ by averaging independent observations (data samples). But, this sample average is a RV!

Let X_{1}, \cdots, X_{n} be n iid RVs with PDF $f_{X}(x)$ obtained from n repeated independent trials of an experiment. The sample mean of X is then given by the RV

$$
M_{n}(X)=\frac{X_{1}+\cdots+X_{n}}{n}
$$

Expected value and sample mean

Note:
■ $\mathrm{E}[X]$ is a number (deterministic)

- $M_{n}(X)=\frac{X_{1}+\cdots+X_{n}}{n}$ is a function of the RVs X_{1}, \cdots, X_{n}. Hence, $M_{n}(X)$ is also a RV.

This means we can talk about the expected value $E\left[M_{n}(X)\right]$ and variance $\operatorname{var}\left[M_{n}(X)\right]$.

Main question to answer: How well does $M_{n}(X)$ converge to $\mathrm{E}[X]$ as a function of n ?

Expected value and sample mean

Because X_{1}, \cdots, X_{N} are iid:

$$
\begin{aligned}
\mathrm{E}\left[M_{n}(X)\right] & =\mathrm{E}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{1}{n}\left(\mathrm{E}\left[X_{1}\right]+\cdots+\mathrm{E}\left[X_{n}\right]\right) \\
& =\frac{1}{n}(\mathrm{E}[X]+\cdots+\mathrm{E}[X])=\mathrm{E}[X] \\
\operatorname{var}\left[M_{n}(X)\right] & =\frac{1}{n^{2}} \operatorname{var}\left[X_{1}+\cdots+X_{n}\right]=\frac{\operatorname{var}\left[X_{1}\right]+\cdots+\operatorname{var}\left[X_{n}\right]}{n^{2}} \\
& =\frac{n \operatorname{var}[X]}{n^{2}}=\frac{\operatorname{var}[X]}{n} .
\end{aligned}
$$

We conclude: as $n \rightarrow \infty, M_{n}(X)$ is arbitrarily close to $\mathrm{E}[X]$.

■ $M_{n}(X)$ converges to $\mathrm{E}[X]$. What does this mean, exactly?

Problem 10.1.1

X_{1}, \cdots, X_{n} is an iid sequence of exponential random variables, each with expected value 5 .
(a) What is $\operatorname{var}\left[M_{9}(X)\right]$, the variance of the sample mean based on 9 trials?
(b) What is $\mathrm{P}\left[X_{1}>7\right]$, the probability that one outcome exceeds 7 ?
(c) Use the central limit theorem to estimate $\mathrm{P}\left[M_{9}(X)>7\right]$, the probability that the sample mean exceeds 7 .

Problem 10.1.1

X_{1}, \cdots, X_{n} is an iid sequence of exponential random variables, each with expected value 5 .
(a) What is $\operatorname{var}\left[M_{9}(X)\right]$, the variance of the sample mean based on 9 trials?
(b) What is $\mathrm{P}\left[X_{1}>7\right]$, the probability that one outcome exceeds 7 ?
(c) Use the central limit theorem to estimate $\mathrm{P}\left[M_{9}(X)>7\right]$, the probability that the sample mean exceeds 7 .

The X_{i} have $\mu_{X}=5, \sigma_{X}=5, F_{X}(x)=1-e^{-x / 5}$.
(a) $\operatorname{var}\left[M_{9}(X)\right]=\frac{\sigma_{X}^{2}}{9}=\frac{25}{9}$
(b) $\mathrm{P}\left[X_{1}>7\right]=1-\mathrm{P}\left[X_{1} \leq 7\right]=1-F_{X}(7)=e^{-7 / 5} \approx 0.247$
(c) $\mathrm{P}\left[M_{9}(X)>7\right]=1-\mathrm{P}\left[M_{9} \leq 7\right]=1-\mathrm{P}\left[\frac{M_{9}-5}{\text { std }} \leq \frac{7-5}{\text { std }}\right] \approx$ $1-\Phi\left(\frac{2}{5 / 3}\right) \approx 0.1151$

Deviation of a RV from its expected value

How well does $M_{n}(X)$ converge to $\mathrm{E}[X]$? Consider first:
What is the deviation of a RV X from its expected value: $|X-\mathrm{E}[X]|$?
■ Markov inequality: If X is nonnegative $(\mathrm{P}[X<0]=0)$

$$
\mathrm{P}\left[X \geq c^{2}\right] \leq \frac{\mathrm{E}[X]}{c^{2}} \quad \text { (often inaccurate) }
$$

- Chebyshev inequality: For a RV X

$$
\mathrm{P}[|X-\mathrm{E}[X]| \geq c] \leq \frac{\operatorname{var}[X]}{c^{2}}
$$

(most often used)

- Chernoff Bound:

$$
\mathrm{P}[X \geq c] \leq \min _{s \geq 0} e^{-s c} \phi X(s)
$$

(need to know the PDF)

Deviation of a RV from its expected value

How well does $M_{n}(X)$ converge to $\mathrm{E}[X]$? Consider first:
What is the deviation of a RV X from its expected value: $|X-\mathrm{E}[X]|$?
■ Markov inequality: If X is nonnegative $(\mathrm{P}[X<0]=0)$

$$
\mathrm{P}\left[X \geq c^{2}\right] \leq \frac{\mathrm{E}[X]}{c^{2}} \quad \text { (often inaccurate) }
$$

- Chebyshev inequality: For a RV X

$$
\mathrm{P}[|X-\mathrm{E}[X]| \geq c] \leq \frac{\operatorname{var}[X]}{c^{2}} \quad \text { (most often used) }
$$

- Chernoff Bound:

$$
\mathrm{P}[X \geq c] \leq \min _{s \geq 0} e^{-s c} \phi_{X}(s) \quad \text { (need to know the PDF) }
$$

(P10.1.1) Chebyshev:
$\mathrm{P}\left[M_{9}(X)>7\right]=\mathrm{P}\left[M_{9}(X)-5>2\right] \leq \operatorname{var}\left[M_{9}\right] / 4 \approx 0.6944$

Derivations

Markov inequality:

For constant c and a non-negative $\mathrm{RV} X$ (i.e., $\mathrm{P}[X<0]=0$)

$$
\begin{aligned}
\mathrm{E}[X]= & \int_{0}^{\infty} x f_{X}(x) \mathrm{d} x=\int_{0}^{c^{2}} x f_{X}(x) \mathrm{d} x+\int_{c^{2}}^{\infty} x f_{X}(x) \mathrm{d} x \\
& \geq \int_{c^{2}}^{\infty} x f_{X}(x) \mathrm{d} x \\
\geq & c^{2} \int_{c^{2}}^{\infty} f_{X}(x) \mathrm{d} x \text { since } x \geq c^{2} \\
& \Rightarrow \mathrm{P}\left[X \geq c^{2}\right] \leq \frac{\mathrm{E}[X]}{c^{2}}
\end{aligned}
$$

Derivations (cont'd)

Chebyshev inequality:

Using the Markov inequality

$$
\mathrm{P}\left[X \geq c^{2}\right] \leq \frac{\mathrm{E}[X]}{c^{2}}
$$

■ Let $X=|Y-\mathrm{E}[Y]|^{2}$. The Markov inequality then says:

$$
\mathrm{P}\left[X \geq c^{2}\right]=\mathrm{P}\left[|Y-\mathrm{E}[Y]|^{2} \geq c^{2}\right] \leq \frac{\mathrm{E}\left[|Y-\mathrm{E}[Y]|^{2}\right]}{c^{2}}=\frac{\operatorname{var}[Y]}{c^{2}}
$$

- As $\mathrm{P}\left[|Y-\mathrm{E}[Y]|^{2} \geq c^{2}\right]=\mathrm{P}[|Y-\mathrm{E}[Y]| \geq c]$, we obtain

$$
\mathrm{P}[|Y-\mathrm{E}[Y]| \geq c] \leq \frac{\operatorname{var}[Y]}{c^{2}}
$$

which is the Chebyshev inequality

Derivations (cont'd)

Chernoff bound:

$$
\mathrm{P}[X \geq c]=\int_{c}^{\infty} f_{X}(x) \mathrm{d} x=\int_{-\infty}^{\infty} u(x-c) f_{X}(x) \mathrm{d} x
$$

where $u(x)$ is the unit step function.

- Since $u(x-c) \leq e^{s(x-c)}$ for all $s \geq 0$, then

$$
\mathrm{P}[X \geq c] \leq \int_{-\infty}^{\infty} e^{s(x-c)} f_{X}(x) \mathrm{d} x=e^{-s c} \int_{-\infty}^{\infty} e^{s X} f_{X}(x) \mathrm{d} x=e^{-s c} \phi_{X}(s)
$$

with $\phi_{X}(s)$ the moment generating function of X, and any $s \geq 0$.

- To obtain the bound, we can select the s that minimizes $e^{-s c} \phi_{X}(s)$.

The Chernoff bound is then given by

$$
\mathrm{P}[X \geq c] \leq \min _{s \geq 0} e^{-s c} \phi_{X}(s) .
$$

Problem 10.2.6

Use the Chernoff bound to show that the Gaussian $(0,1)$ random variable Z satisfies $\mathrm{P}[Z \geq c] \leq e^{-c^{2} / 2}$.

Problem 10.2.6

Use the Chernoff bound to show that the Gaussian $(0,1)$ random variable Z satisfies $\mathrm{P}[Z \geq c] \leq e^{-c^{2} / 2}$.

The $N[0,1]$ random variable Z has MGF $\phi_{Z}(s)=e^{s^{2} / 2}$. Hence the Chernoff bound for Z is

$$
\mathrm{P}[Z \geq c] \leq \min _{s \geq 0} e^{-s c} e^{s^{2} / 2}=\min _{s \geq 0} e^{s^{2} / 2-s c}
$$

We can minimize $e^{s^{2} / 2-s c}$ by minimizing the exponent $s^{2} / 2-s c$. By setting

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(s^{2} / 2-s c\right)=s-c=0
$$

we obtain $s=c$. At $s=c$, the upper bound is $\mathrm{P}[Z \geq c] \leq e^{-c^{2} / 2}$.

Problem 10.2.6

Use the Chernoff bound to show that the Gaussian $(0,1)$ random variable Z satisfies $\mathrm{P}[Z \geq c] \leq e^{-c^{2} / 2}$.

The $N[0,1]$ random variable Z has MGF $\phi_{Z}(s)=e^{s^{2} / 2}$. Hence the Chernoff bound for Z is

$$
\mathrm{P}[Z \geq c] \leq \min _{s \geq 0} e^{-s c} e^{s^{2} / 2}=\min _{s \geq 0} e^{s^{2} / 2-s c}
$$

We can minimize $e^{s^{2} / 2-s c}$ by minimizing the exponent $s^{2} / 2-s c$. By setting

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(s^{2} / 2-s c\right)=s-c=0
$$

we obtain $s=c$. At $s=c$, the upper bound is $\mathrm{P}[Z \geq c] \leq e^{-c^{2} / 2}$.

	$c=1$	$c=2$	$c=3$	$c=4$	$c=5$
Chernoff bound	0.606	0.135	0.011	3.35×10^{-4}	3.73×10^{-6}
$Q(c)$	0.159	0.023	0.0013	3.17×10^{-5}	2.87×10^{-7}

Going back to the sample mean...

How well does the sample mean $M_{n}(X)=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converge to $\mathrm{E}[X]$?
Chebyshev inequality applied to $M_{n}(X)$:

$$
\begin{aligned}
\mathrm{P}\left[\left|M_{n}(X)-\mathrm{E}[X]\right| \geq c\right] & =\mathrm{P}\left[\left|M_{n}(X)-\mathrm{E}\left[M_{n}(X)\right]\right| \geq c\right] \\
& \leq \frac{\operatorname{var}\left[M_{n}(X)\right]}{c^{2}}=\frac{\operatorname{var}[X]}{n c^{2}}
\end{aligned}
$$

This is also known as the (weak) law of large numbers:

- The probability that the sample mean $M_{n}(X)$ is more than c units away from $\mathrm{E}[X]$ can be made arbitrarily small by making n large enough.

This is called convergence in probability (almost sure, a.s.)

Problem 10.3.2

Event A has probability $\mathrm{P}[A]=0.8$. Let $\hat{P}_{n}(A)$ denote the relative frequency of event A in n independent trials.
Let X_{A} denote the indicator random variable for event A.
(a) Find $\mathrm{E}\left[X_{A}\right]$ and $\operatorname{var}\left[X_{A}\right]$.
(b) What is $\operatorname{var}\left[\hat{P}_{n}(A)\right]$.
(c) Use the Chebyshev inequality to find the confidence coefficient $1-\alpha$ such that $\hat{P}_{100}(A)$ is within 0.1 of $\mathrm{P}[A]$.
I.e., find α such that $\mathrm{P}\left[\left|\hat{P}_{100}(A)-\mathrm{P}[A]\right| \leq 0.1\right] \geq 1-\alpha$.

Problem 10.3.2

Event A has probability $\mathrm{P}[A]=0.8$. Let $\hat{P}_{n}(A)$ denote the relative frequency of event A in n independent trials.
Let X_{A} denote the indicator random variable for event A.
(a) Find $\mathrm{E}\left[X_{A}\right]$ and $\operatorname{var}\left[X_{A}\right]$.
(b) What is $\operatorname{var}\left[\hat{P}_{n}(A)\right]$.
(c) Use the Chebyshev inequality to find the confidence coefficient $1-\alpha$ such that $\hat{P}_{100}(A)$ is within 0.1 of $\mathrm{P}[A]$.
I.e., find α such that $\mathrm{P}\left[\left|\hat{P}_{100}(A)-\mathrm{P}[A]\right| \leq 0.1\right] \geq 1-\alpha$.
(a) Since X_{A} is a $\operatorname{Bernoulli}(p=\mathrm{P}[A])$ random variable,

$$
\mathrm{E}\left[X_{A}\right]=\mathrm{P}[A]=0.8, \quad \operatorname{var}\left[X_{A}\right]=\mathrm{P}[A](1-\mathrm{P}[A])=0.16
$$

(b) $\hat{P}_{n}(A)=M_{n}\left(X_{A}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{A, i}$

$$
\operatorname{var}\left[\hat{P}_{n}(A)\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left[X_{A, i}\right]=\frac{\mathrm{P}[A](1-\mathrm{P}[A])}{n}
$$

Problem 10.3.2 (cont'd)

(c) Since $\hat{P}_{100}(A)=M_{100}\left(X_{A}\right)$, we can use the Chebyshev inequality to write

$$
\begin{aligned}
\mathrm{P}\left[\left|\hat{P}_{100}(A)-\mathrm{P}[A]\right|<c\right] & \geq 1-\frac{\operatorname{var}\left[X_{A}\right]}{100 c^{2}} \\
& =1-\frac{0.16}{100 c^{2}}=1-\alpha
\end{aligned}
$$

For $c=0.1, \alpha=0.16 /\left[100(0.1)^{2}\right]=0.16$. Thus, with 100 samples, our confidence coefficient is $1-\alpha=0.84$.

Quality of an estimator

The sample mean $M_{n}(X)=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is one example of estimating a model parameter (here, $r=\mathrm{E}[X]$) describing a statistical model.

Also other parameters of a probability model, e.g., the higher order moments $\mathrm{E}\left[X^{2}\right], \mathrm{E}\left[X^{3}\right], \cdots, \mathrm{E}\left[X^{n}\right]$, can be estimated by sample averages.

How to express whether an estimator \hat{R} of a model parameter r is good?

- Bias
- Consistency
- Accuracy (e.g., mean square error)

Unbiased estimator

An estimate \hat{R} of a parameter r is unbiased if $\mathrm{E}[\hat{R}]=r$.
Let \hat{R}_{n} be an estimator of r using observations $X_{1}, X_{2}, \cdots, X_{n}$.
The sequence of estimators \hat{R}_{n} of a parameter r is asymptotically unbiased if

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left[\hat{R}_{n}\right]=r
$$

Consistent estimator

The sequence of estimates $\hat{R}_{1}, \hat{R}_{2}, \cdots$ of parameter r is consistent if for any $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left[\left|\hat{R}_{n}-r\right| \geq \epsilon\right]=0
$$

I.e., the sequence of estimates $\hat{R}_{1}, \hat{R}_{2}, \cdots$ converges in probability.

- Necessary: (asymptotically) unbiased. What else is needed?

Mean square error

The mean square error of an estimator \hat{R} of a parameter r is

$$
e=\mathrm{E}\left[(\hat{R}-r)^{2}\right]
$$

When \hat{R} is unbiased, $\mathrm{E}[\hat{R}]=r$, then

$$
e=\mathrm{E}\left[(\hat{R}-r)^{2}\right]=\mathrm{E}\left[(\hat{R}-\mathrm{E}[\hat{R}])^{2}\right]=\operatorname{var}[\hat{R}]
$$

Relation MSE, bias and variance

$$
\begin{aligned}
& \text { Let } b=\mathrm{E}[\hat{R}]-r \text { and } V=\hat{R}-\mathrm{E}[\hat{R}] \text {, so that } \mathrm{E}[V]=0 \text {. } \\
& \qquad \begin{aligned}
e & =\mathrm{E}\left[(\hat{R}-r)^{2}\right]=\mathrm{E}\left[(\hat{R}-\mathrm{E}[\hat{R}]+\mathrm{E}[\hat{R}]-r)^{2}\right] \\
& =\mathrm{E}\left[(V+b)^{2}\right]=\mathrm{E}\left[V^{2}\right]+2 \mathrm{E}[V] b+b^{2} \\
& =\underbrace{\mathrm{E}\left[V^{2}\right]}_{\text {variance }}+\underbrace{b^{2}}_{\text {bias-squared }}
\end{aligned}
\end{aligned}
$$

Mean square error - Theorem 10.8

Theorem: If a sequence of unbiased estimators $\hat{R}_{1}, \hat{R}_{2}, \cdots$ of parameter r has a MSE $e_{n}=\operatorname{var}\left[\hat{R}_{n}\right]$ with $\lim _{n \rightarrow \infty} e_{n}=0$, then the sequence is consistent.

Proof:

This follows directly from the Chebyshev inequality:

$$
\mathrm{P}\left[\left|\hat{R}_{n}-r\right| \geq \epsilon\right] \leq \frac{\operatorname{var}\left[\hat{R}_{n}\right]}{\epsilon^{2}}
$$

Applying Chebyshev for $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left[\left|\hat{R}_{n}-r\right| \geq \epsilon\right] \leq \lim _{n \rightarrow \infty} \frac{\operatorname{var}\left[\hat{R}_{n}\right]}{\epsilon^{2}}=0
$$

Example

Let N_{k} be the number of packets per interval of k seconds passing through a router. Assume N_{k} is Poisson distributed with $\mathrm{E}\left[N_{k}\right]=k r$.
Let $\hat{R}_{k}=N_{k} / k$ denote an estimator of the parameter r (number of packets/sec).
(a) Is \hat{R}_{k} unbiased?
(b) What is the mean square error of \hat{R}_{k} ?
(c) Is the sequence $\hat{R}_{1}, \hat{R}_{2}, \cdots$ consistent?

Example

Let N_{k} be the number of packets per interval of k seconds passing through a router. Assume N_{k} is Poisson distributed with $\mathrm{E}\left[N_{k}\right]=k r$.
Let $\hat{R}_{k}=N_{k} / k$ denote an estimator of the parameter r (number of packets/sec).
(a) Is \hat{R}_{k} unbiased?
(b) What is the mean square error of \hat{R}_{k} ?
(c) Is the sequence $\hat{R}_{1}, \hat{R}_{2}, \cdots$ consistent?
(a) $\mathrm{E}\left[\hat{R}_{k}\right]=\mathrm{E}\left[N_{k} / k\right]=\mathrm{E}\left[N_{k}\right] / k=r$. Yes, unbiased.
(b) Poisson distributed, so var $\left[N_{k}\right]=k r$,

$$
\operatorname{var}\left[\hat{R}_{k}\right]=\operatorname{var}\left[N_{k} / k\right]=\operatorname{var}\left[N_{k}\right] / k^{2}=r / k
$$

Unbiased, so the MSE is $e_{k}=\mathrm{E}\left[\left(\hat{R}_{k}-r\right)^{2}\right]=\operatorname{var}\left[\hat{R}_{k}\right]=r / k$.
(c) $\lim _{k \rightarrow \infty} e_{k}=\lim _{k \rightarrow \infty} r / k=0$, thus consistent according to

Theorem 10.8.

Mean square error - Theorem 10.9, 10.11

- The sample mean $M_{n}(X)$ is an unbiased and consistent estimator of $\mathrm{E}[X]$ (if X has finite variance)
- The sample variance $V_{n}(X)$ is biased (but asymptotically unbiased).

$$
V_{n}(X)=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-M_{n}(X)\right)^{2}
$$

The bias happens because $M_{n}(X)$ also depends on X_{i}. But

$$
V_{n}^{\prime}(X)=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-M_{n}(X)\right)^{2}
$$

is an unbiased estimate of $\operatorname{var}[X]$.

Problem 10.4.1

An experimental trial produces random variables X_{1} and X_{2} with correlation $r=\mathrm{E}\left[X_{1} X_{2}\right]$. To estimate r, we perform n independent trials and form the estimate

$$
\hat{R}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{1}(i) X_{2}(i)
$$

where $X_{1}(i)$ and $X_{2}(i)$ are samples of X_{1} and X_{2} on trial i. Show that if $\operatorname{var}\left[X_{1} X_{2}\right]$ is finite, then $\hat{R}_{1}, \hat{R}_{2}, \cdots$ is an unbiased, consistent sequence of estimates of r.

Problem 10.4.1

An experimental trial produces random variables X_{1} and X_{2} with correlation $r=\mathrm{E}\left[X_{1} X_{2}\right]$. To estimate r, we perform n independent trials and form the estimate

$$
\hat{R}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{1}(i) X_{2}(i)
$$

where $X_{1}(i)$ and $X_{2}(i)$ are samples of X_{1} and X_{2} on trial i. Show that if $\operatorname{var}\left[X_{1} X_{2}\right]$ is finite, then $\hat{R}_{1}, \hat{R}_{2}, \cdots$ is an unbiased, consistent sequence of estimates of r.

Let $Y=X_{1} X_{2}$, and for the i th trial, let $Y_{i}=X_{1}(i) X_{2}(i)$.
Then $\hat{R}_{n}=M_{n}(Y)$, the sample mean of random variable Y. By Theorem 10.9, $M_{n}(Y)$ is unbiased.

Since $\operatorname{var}[Y]=\operatorname{var}\left[X_{1} X_{2}\right]<\infty$, Theorem 10.11 tells us that $M_{n}(Y)$ is a consistent sequence.

To do for this lecture:

■ Read chapter 6.2, 6.5, 9 and 10

- Make some of the indicated exercises:
6.2.1, 6.2.5, 6.2.7, 9.2.1, 9.2.3, 9.3.3, 9.3.5, 9.3.7, 10.2.1, 10.2.3, 10.2.5, 10.3.1

