EE2S31 Signal Processing - Stochastic Processes
 Lecture 2: Random vectors \& conditional probability models - Chs. 8 \& 7

Alle-Jan van der Veen

25 Apr 2022

Today

- Extension of last week's multiple variables: random vectors
- Conditional probability models:
- Conditioning a random variable by an event
- Conditioning two random variables by an event
- Conditioning by another random variable

(Ch. 8) Random vectors

Why random vectors?

- More concise representations.
- Allows to use principles from linear algebra.

Notation

- A random vector is the column vector

$$
\boldsymbol{X}=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{N}
\end{array}\right]=\left[X_{1}, \cdots, X_{N}\right]^{T}
$$

- Transpose operator: ${ }^{T}$ or .'
- Sample (realization) of random vector: $\boldsymbol{x}=\left[x_{1}, \cdots, x_{N}\right]^{T}$
- CDF of a random vector $\boldsymbol{X}: F_{X}(\boldsymbol{x})=F_{X_{1}, \cdots, X_{N}}\left(x_{1}, \cdots, x_{N}\right)$
- PMF of a (discrete) random vector X :
$P_{\boldsymbol{X}}(\boldsymbol{x})=P_{X_{1}, \cdots, x_{N}}\left(x_{1}, \cdots, x_{N}\right)$
- PDF of a (continuous) random vector X : $f_{\boldsymbol{X}}(\boldsymbol{x})=f_{X_{1}, \cdots, x_{N}}\left(x_{1}, \cdots, x_{N}\right)$

Example

$$
f_{X}(x)=\left\{\begin{array}{ll}
6 e^{-a^{T} x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \text { with } \quad a=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]^{T} .\right.
$$

What is the CDF $F_{X}(x)$?

$$
\begin{aligned}
& f_{\boldsymbol{X}}(\boldsymbol{x})=\left\{\begin{array}{ll}
6 e^{-\mathbf{a}^{T} \boldsymbol{x}} & \boldsymbol{x} \geq 0 \\
0 & \text { otherwise }
\end{array}= \begin{cases}6 e^{-x_{1}-2 x_{2}-3 x_{3}} & x_{i} \geq 0 \forall i \\
0 & \text { otherwise }\end{cases} \right. \\
& F_{\boldsymbol{X}}(\boldsymbol{x})= \begin{cases}\int_{0}^{x_{1}} \int_{0}^{x_{2}} \int_{0}^{x_{3}} 6 e^{-u_{1}-2 u_{2}-3 u_{3}} \mathrm{~d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} u_{3} & x_{i} \geq 0 \forall i \\
0 & \text { otherwise }\end{cases} \\
&= \begin{cases}\left(1-e^{-x_{1}}\right)\left(1-e^{-2 x_{2}}\right)\left(1-e^{-3 x_{3}}\right) & x_{i} \geq 0 \forall i \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Pairs of random vectors

Joint CDF, PDF and PMF of two random vectors X and Y :

- CDF of random vectors X and Y :

$$
F_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})=F_{X_{1}, \cdots, x_{N}, Y_{1}, \cdots, Y_{N}}\left(x_{1}, \cdots, x_{N}, y_{1}, \cdots, y_{N}\right)
$$

- PMF of (discrete) random vectors X and Y :

$$
P_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})=P_{X_{1}, \cdots, x_{N}, Y_{1}, \cdots, Y_{N}}\left(x_{1}, \cdots, x_{N}, y_{1}, \cdots, y_{N}\right)
$$

- PDF of (continuous) random vectors X and Y :

$$
f_{\boldsymbol{X}, \boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{y})=f_{X_{1}, \cdots, x_{N}, Y_{1}, \cdots, Y_{N}}\left(x_{1}, \cdots, x_{N}, y_{1}, \cdots, y_{N}\right)
$$

Independent random vectors

Two random vectors X and Y are independent if

- Discrete RVs: $P_{X, Y}(\boldsymbol{x}, \boldsymbol{y})=P_{X}(\boldsymbol{x}) P_{\boldsymbol{Y}}(\boldsymbol{y})$
- Continuous RVs: $f_{X, Y}(\boldsymbol{x}, \boldsymbol{y})=f_{X}(\boldsymbol{x}) f_{Y}(\boldsymbol{y})$

Expected values for random vectors

For a random matrix \boldsymbol{A}, with $A_{i j}$ the (i, j) th element of $\boldsymbol{A}, \mathrm{E}[\boldsymbol{A}]$ is a matrix with $\mathrm{E}\left[A_{i j}\right]$ as its (i, j) th element.

The expected value of the random vector X therefore equals

$$
\mathrm{E}[\boldsymbol{X}]=\left[\begin{array}{c}
\mathrm{E}\left[X_{1}\right] \\
\vdots \\
\mathrm{E}\left[X_{N}\right]
\end{array}\right]
$$

The correlation matrix
Now consider the vector $\boldsymbol{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{N}\end{array}\right]$, shown for $N=3$.

$$
\begin{aligned}
& \boldsymbol{x} \boldsymbol{x}^{T}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]\left[X_{1}, X_{2}, X_{3}\right]=\left[\begin{array}{ccc}
X_{1}^{2} & X_{1} X_{2} & X_{1} X_{3} \\
X_{2} X_{1} & X_{2}^{2} & X_{2} X_{3} \\
X_{3} X_{1} & X_{3} X_{2} & X_{3}^{2}
\end{array}\right] \\
& \mathrm{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]=\left[\begin{array}{ccc}
\mathrm{E}\left[X_{1}^{2}\right] & \mathrm{E}\left[X_{1} X_{2}\right] & \mathrm{E}\left[X_{1} X_{3}\right] \\
\mathrm{E}\left[X_{2} X_{1}\right] & \mathrm{E}\left[X_{2}^{2}\right] & \mathrm{E}\left[X_{2} X_{3}\right] \\
\mathrm{E}\left[X_{3} X_{1}\right] & \mathrm{E}\left[X_{3} X_{2}\right] & \mathrm{E}\left[X_{3}^{2}\right]
\end{array}\right] \\
&=\left[\begin{array}{ccc}
\mathrm{E}\left[X_{1}^{2}\right] & r_{1} X_{2} & r_{1} x_{3} \\
r x_{2} X_{1} & \mathrm{E}\left[X_{2}^{2}\right] & r_{2} X_{3} \\
r x_{3} X_{1} & r x_{3} X_{2} & \mathrm{E}\left[X_{3}^{2}\right]
\end{array}\right]
\end{aligned}
$$

$R_{X}=\mathrm{E}\left[X X^{\top}\right]$ is known as the correlation matrix and extends the concept of the correlation $\mathrm{E}[X Y]$ to vectors.

The covariance matrix

Similarly, we can define the covariance matrix

$$
\boldsymbol{C}_{\boldsymbol{X}}=\mathrm{E}\left[(\boldsymbol{X}-E[\boldsymbol{X}])(\boldsymbol{X}-E[\boldsymbol{X}])^{T}\right]=\boldsymbol{R}_{\boldsymbol{X}}-\mathrm{E}[\boldsymbol{X}] \mathrm{E}[\boldsymbol{X}]^{T} .
$$

For the vector $\boldsymbol{X}=\left[X_{1}, X_{2}, X_{3}\right]^{T}$ we get
$\boldsymbol{C}_{\boldsymbol{X}}=\mathrm{E}\left[\boldsymbol{X} \boldsymbol{X}^{T}\right]-\mathrm{E}[\boldsymbol{X}] E[\boldsymbol{X}]^{T}=\left[\begin{array}{ccc}\operatorname{var}\left(X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) & \operatorname{cov}\left(X_{1}, X_{3}\right) \\ \operatorname{cov}\left(X_{2}, X_{1}\right) & \operatorname{var}\left(X_{2}\right) & \operatorname{cov}\left(X_{2}, X_{3}\right) \\ \operatorname{cov}\left(X_{3}, X_{1}\right) & \operatorname{cov}\left(X_{3}, X_{2}\right) & \operatorname{var}\left(X_{3}\right)\end{array}\right]$

If the X_{i} are uncorrelated $\left(\operatorname{cov}\left(X_{i}, X_{j}\right)=0\right)$, then C_{X} is diagonal.
If the random variables $\left\{X_{i}\right\}$ are independent, identically distributed (i.i.d.), then $\boldsymbol{C}_{\boldsymbol{X}}=\sigma^{2} \boldsymbol{I}$.

Cross-covariance \& cross-correlation matrix

For two random vectors, their cross-correlation matrix is defined as

$$
\boldsymbol{R}_{X Y}=\mathrm{E}\left[X Y^{T}\right]
$$

and their cross-covariance matrix is

$$
C_{X Y}=\mathrm{E}\left[X \boldsymbol{Y}^{T}\right]-\mathrm{E}[\boldsymbol{X}] \mathrm{E}\left[\boldsymbol{Y}^{T}\right]
$$

Linear transformations
If $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b}$ is a linear transformation of a random vector \boldsymbol{X}, then

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{Y}] & =\boldsymbol{A E}[\boldsymbol{X}]+\boldsymbol{b} \\
C_{Y} & =\boldsymbol{A} C_{\boldsymbol{X}} \boldsymbol{A}^{T} \\
C_{Y X} & =\boldsymbol{A} C_{\boldsymbol{X}}
\end{aligned}
$$

Exercise 8.5.2
$\boldsymbol{X}=\left[X_{1}, X_{2}\right]^{\top}$ is the Gaussian random vector with $\mathrm{E}[\boldsymbol{X}]=[0,0]^{\top}$ and covariance matrix

$$
C_{X}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

What is the PDF of $Y=[2,1] X$?

Exercise 8.5.2

$\boldsymbol{X}=\left[X_{1}, X_{2}\right]^{\top}$ is the Gaussian random vector with $\mathrm{E}[\boldsymbol{X}]=[0,0]^{\top}$ and covariance matrix

$$
C_{X}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

What is the PDF of $Y=[2,1] X$?
Y is the sum of two Gaussians, is therefore Gaussian with mean

$$
\mathrm{E}[Y]=\mathrm{E}\left[2 X_{1}+X_{2}\right]=0
$$

and variance

$$
\begin{aligned}
\operatorname{var}[Y] & =\mathrm{E}\left[Y^{2}\right]-0=\mathrm{E}\left[Y Y^{\top}\right] \\
& =\mathrm{E}\left\{\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \\
& =\left[\begin{array}{ll}
2 & 1
\end{array}\right] \mathrm{E}\left\{\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]\right\}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=10
\end{aligned}
$$

Gaussian variables

In Ch. 5 we saw

$$
f_{X, Y}(x, y)=\frac{\exp \left[-\frac{\left(\frac{x-E[X]}{\sigma_{X}}\right)^{2}-\frac{2 \rho(x-E[X]](y-E[Y])}{\sigma_{X} \sigma_{Y}}+\left(\frac{y-E[Y]}{\sigma_{Y}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right]}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}
$$

- Extending this to higher dimensions is rather impractical.
- Using vector notation a very concise and useful expression can be obtained.

Gaussian random vectors

Let \boldsymbol{X} be a vector of correlated Gaussian RVs: $\boldsymbol{X}=\left[X_{1}, X_{2}, \cdots, X_{N}\right]^{T}$.
The PDF $f_{X}(x)$ is then given by

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{\exp \left[-\frac{1}{2}(\boldsymbol{x}-\mathrm{E}[\boldsymbol{X}])^{T} \boldsymbol{C}_{\boldsymbol{X}}^{-1}(\boldsymbol{x}-\mathrm{E}[\boldsymbol{X}])\right]}{(2 \pi)^{N / 2} \operatorname{det}\left(\boldsymbol{C}_{\boldsymbol{X}}\right)^{1 / 2}}
$$

Special case: $N=2$

$$
\begin{aligned}
\boldsymbol{C}_{X} & =\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right] \\
\operatorname{det}\left(\boldsymbol{C}_{\boldsymbol{X}}\right) & =\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right) \\
\boldsymbol{C}_{X}^{-1} & =\frac{1}{\sigma_{X}^{2} \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left[\begin{array}{cc}
\sigma_{Y}^{2} & -\rho \sigma_{X} \sigma_{Y} \\
-\rho \sigma_{X} \sigma_{Y} & \sigma_{X}^{2}
\end{array}\right]
\end{aligned}
$$

Verify that this leads to the expression on the previous slide!

Uncorrelated Gaussian random vectors

PDF of Gaussian random vector:

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{\exp \left[-\frac{1}{2}(\boldsymbol{x}-\mathrm{E}[\boldsymbol{X}])^{T} \boldsymbol{C}_{\boldsymbol{X}}^{-1}(\boldsymbol{x}-\mathrm{E}[\boldsymbol{X}])\right]}{(2 \pi)^{N / 2} \operatorname{det}\left(\boldsymbol{C}_{\boldsymbol{X}}\right)^{1 / 2}}
$$

Let \boldsymbol{X} be a vector of uncorrelated Gaussian RVs: $\boldsymbol{X}=\left[X_{1}, \cdots, X_{N}\right]^{T}$.

- $\boldsymbol{C l}_{\boldsymbol{X}}=\operatorname{diag}\left(\sigma_{X_{1}}^{2}, \sigma_{X_{2}}^{2}, \cdots, \sigma_{X_{N}}^{2}\right)$
- $\operatorname{det}\left(\boldsymbol{C}_{\boldsymbol{X}}\right)=\prod_{i=1}^{N} \sigma_{X_{i}}^{2}$
- $(\boldsymbol{x}-\mathrm{E}[\boldsymbol{X}])^{T} \boldsymbol{C}_{\boldsymbol{X}}^{-1}(\boldsymbol{x}-\mathrm{E}[\boldsymbol{X}])=\sum_{i=1}^{N} \frac{\left(x_{i}-\mathrm{E}\left[X_{i}\right]\right)^{2}}{\sigma_{x_{i}}^{2}}$

The PDF $f_{X}(x)$ is then given by

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=\prod_{i=1}^{N} \frac{\exp \left[-\left(x_{i}-\mathrm{E}\left[X_{i}\right]\right)^{2} / 2 \sigma_{X_{i}}^{2}\right]}{\sqrt{2 \pi \sigma_{X_{i}}^{2}}}=\prod_{i=1}^{N} f_{X_{i}}\left(x_{i}\right)
$$

Hence, the variables X_{1}, \cdots, X_{N} are independent.

Linear transformation of random vectors

Let X be a continuous random vector and A an invertible matrix. Then, $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b}$ has the PDF

$$
f_{\boldsymbol{Y}}(\boldsymbol{y})=\frac{1}{|\operatorname{det}(\boldsymbol{A})|} f_{\boldsymbol{X}}\left(\boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})\right)
$$

Derivation:

$$
\begin{aligned}
F_{\boldsymbol{Y}}(\boldsymbol{y}) & =\mathrm{P}[\boldsymbol{Y} \leq \boldsymbol{y}]=\mathrm{P}[\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b} \leq \boldsymbol{y}]=\mathrm{P}\left[\boldsymbol{X} \leq \boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})\right] \\
& =F_{\boldsymbol{X}}\left(\boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})\right)
\end{aligned}
$$

Next, take derivatives to find $f_{Y}(y)$.

Transformation of Gaussian random vectors

Let X be a Gaussian random vector and A an invertible matrix.
What is the PDF of $\boldsymbol{Y}=\boldsymbol{A X}+\boldsymbol{b}$?

$$
\begin{aligned}
f_{\boldsymbol{Y}}(\boldsymbol{y}) & =\frac{1}{|\operatorname{det}(\boldsymbol{A})|} f_{\boldsymbol{X}}\left(\boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})\right) \\
& =\frac{\exp \left[-\frac{1}{2}\left(\boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})-E[\boldsymbol{X}]\right)^{T} \boldsymbol{C}_{\boldsymbol{X}}^{-1}\left(\boldsymbol{A}^{-1}(\boldsymbol{y}-\boldsymbol{b})-E[\boldsymbol{X}]\right)\right]}{(2 \pi)^{N / 2}|\operatorname{det}(\boldsymbol{A})| \operatorname{det}\left(\boldsymbol{C}_{\boldsymbol{X}}\right)^{1 / 2}} .
\end{aligned}
$$

Using some manipulations, this can be rewritten as

$$
f_{\boldsymbol{Y}}(\boldsymbol{y})=\frac{\exp \left[-\frac{1}{2}(\boldsymbol{y}-E[\boldsymbol{Y}])^{T} \boldsymbol{A}^{-T} \boldsymbol{C}_{\boldsymbol{X}}^{-1} \boldsymbol{A}^{-1}(\boldsymbol{y}-\mathrm{E}[\boldsymbol{Y}])\right]}{(2 \pi)^{N / 2} \operatorname{det}\left(\boldsymbol{A} \boldsymbol{C}_{\boldsymbol{X}} \boldsymbol{A}^{T}\right)^{1 / 2}}
$$

\boldsymbol{Y} is thus also Gaussian with $\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{A E}[\boldsymbol{X}]+\boldsymbol{b}$ and $C_{Y}=A C_{X} A^{T}$
(But, we already knew this: sum of Gaussians is Gaussian.)

Ch. 7 Conditional probability models

Model: $Y=X+N$
Imagine we observe realizations of Y, while our interest is X.

- Derive $P_{X}(x)$?
- Probability of X given an observation $y: P_{X \mid Y}(x \mid y)$?

Conditional probability

Sometimes the occurrence of one event influences the probability of occurrence of other events.

- P[odd number] ?

Conditional probability

Sometimes the occurrence of one event influences the probability of occurrence of other events.

- P[odd number] ?
- P [odd number if we know that the outcome is in event $B]$?

Conditional probability

Interpretation: $\mathrm{P}[A \mid B]$ is the probability of A, given that the event B has already occurred.

$$
\begin{aligned}
\mathrm{P}[A \mid B] & =\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}=\frac{\mathrm{P}[A, B]}{\mathrm{P}[B]} \quad \text { (Bayes' theorem) } \\
\mathrm{P}[A, B] & =\mathrm{P}[A \mid B] \mathrm{P}[B]
\end{aligned}
$$

Example (1)

Event B : "Even outcome" when rolling the dice

Example (2)

Event A : "3 or more" when rolling the dice.
How large is $\mathrm{P}[A \mid B]$?

Example (3)

Different B ! How large is $\mathrm{P}[A \mid B]$ now?

Ch. 7 Conditional probability models

Starting from the conditional probability, we can also define the conditional CDF:

- Conditional probability (Bayes' theorem)

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A, B]}{\mathrm{P}[B]}=\frac{\mathrm{P}[B \mid A] \mathrm{P}[A]}{\mathrm{P}[B]}
$$

- Conditional CDF

Let event $A=\{X \leq x\}$. Then

$$
\mathrm{P}[A \mid B]=\mathrm{P}[X \leq x \mid B] .
$$

Conditioning the CDF, PMF and PDF by an event

CDF, PMF and PDF conditioned by an event:

- Conditional CDF: $F_{X \mid B}(x)=\mathrm{P}[X \leq x \mid B]$
- Conditional PMF: $P_{X \mid B}(x)=\mathrm{P}[X=x \mid B]$
- Conditional PDF: $f_{X \mid B}(x)=\frac{\mathrm{d} F_{X \mid B}(x)}{\mathrm{d} x}$

Conditioning by an event changes the probabilities:

$$
P_{X \mid B}(x)=\left\{\begin{array}{ll}
\frac{P_{X}(x)}{\mathrm{P}[B]} & x \in B \\
0 & \text { otherwise }
\end{array} \quad f_{X \mid B}(x)= \begin{cases}\frac{f_{X}(x)}{\mathrm{P}[B]} & x \in B \\
0 & \text { otherwise }\end{cases}\right.
$$

Those outcomes x where $x \notin B$ will get zero probability, while those outcomes x where $x \in B$ will get proportionally higher.

Example: calculating the conditional PMF

Let X be the time in integer minutes one waits for a bus:

$$
P_{X}(x)= \begin{cases}\frac{1}{20} & x=1,2, \ldots, 20 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose the bus has not arrived by the 6th minute. What is the conditional PMF of the waiting time?

Let A be the event that the bus has not yet arrived after 6 minutes: $\mathrm{P}[A]=14 / 20$.

$$
P_{X \mid X>6}(x)=P_{X \mid A}(x)= \begin{cases}\frac{1 / 20}{14 / 20}=\frac{1}{14} & x=7,8, \ldots, 20 \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 7.1.1
Discrete random variable X has CDF $\quad 0 \quad x<-3$,

$$
F_{X}(x)= \begin{cases}0.4 & -3 \leq x<5 \\ 0.8 & 5 \leq x<7 \\ 1 & x \geq 7\end{cases}
$$

Find the conditional CDF $F_{X \mid X>0}(x)$ and PMF $P_{X \mid X>0}(x)$.

Exercise 7.1.1
Discrete random variable X has CDF $\begin{cases}0 & x<-3, \\ 0.4 & -3 \leq x<5, \\ 0.8 & 5 \leq x<7, \\ 1 & x \geq 7 .\end{cases}$
Find the conditional CDF $F_{X \mid X>0}(x)$ and PMF $P_{X \mid X>0}(x)$.

$$
P_{X}(x)= \begin{cases}0.4 & x=-3 \\ 0.4 & x=5 \\ 0.2 & x=7 \\ 0 & \text { otherwise }\end{cases}
$$

Event $B=\{X>0\}$ has probability $\mathrm{P}[X>0]=P_{X}(5)+P_{X}(7)=0.6$.

$$
P_{X \mid X>0}(x)=\left\{\begin{array}{ll}
\frac{P_{X}(x)}{P[X>0]} & x \in B \\
0 & \text { otherwise }
\end{array}= \begin{cases}2 / 3 & x=5 \\
1 / 3 & x=7 \\
0 & \text { otherwise }\end{cases}\right.
$$

PDF \& PMF with a partition

Let $B_{1}, B_{2}, \cdots, B_{M}$ be M different (non-overlapping) events, together covering all possible outcomes S_{X} : a partition.

The law of total probability says

$$
\begin{gathered}
\text { (discrete) } \quad P_{X}(x)=\sum_{i=1}^{M} P_{X \mid B_{i}}(x) \mathrm{P}\left(B_{i}\right) \\
\text { (continuous) } f_{X}(x)=\sum_{i=1}^{M} f_{X \mid B_{i}}(x) \mathrm{P}\left(B_{i}\right) \\
\mathrm{E}[X]=\sum_{i=1}^{M} \mathrm{E}\left[X \mid B_{i}\right] \mathrm{P}\left[B_{i}\right]
\end{gathered}
$$

PDF \& PMF with a partition

Example The height H of a Male is Gaussian $(180,10)$. The height H of a Female is Gaussian $(170,10)$. There are 4 times more Males than Females in class.

$$
\begin{aligned}
& \mathrm{P}(M)=4 / 5, \mathrm{P}(F) \\
&=1 / 5 \\
& f_{H \mid M}(h)=\frac{1}{100 \sqrt{2 \pi}} e^{-(h-180)^{2} / 200}, \quad f_{H \mid F}(h)=\frac{1}{100 \sqrt{2 \pi}} e^{-(h-170)^{2} / 200} .
\end{aligned}
$$

Then

$$
\begin{aligned}
f_{H}(h) & =f_{H \mid M}(h) \mathrm{P}(M)+f_{H \mid F}(h) \mathrm{P}(F) \\
\mathrm{E}[H] & =\mathrm{E}[H \mid M] \mathrm{P}[M]+\mathrm{E}[H \mid F] \mathrm{P}[F]=180 \cdot \frac{4}{5}+170 \cdot \frac{1}{5}
\end{aligned}
$$

Conditioning multiple RVs by an event

For RVs X and Y and event B, the joint conditional PMF and PDF are given by

$$
\begin{aligned}
P_{X, Y \mid B}(x, y) & =\mathrm{P}[X=x, Y=y \mid B]= \begin{cases}\frac{P_{X, Y}(x, y)}{P[B]} & (x, y) \in B \\
0 & \text { otherwise }\end{cases} \\
f_{X, Y \mid B}(x, y) & = \begin{cases}\frac{f_{X, Y}(x, y)}{P[B]} & (x, y) \in B \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Those outcomes x and y where $(x, y) \notin B$ will get zero probability, while those outcomes x and y where $(x, y) \in B$ will get proportionally higher.

Exercise - Conditional PDF

X and Y are RVs with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{15} & 0 \leq x \leq 5,0 \leq y \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the conditional PDF $f_{X, Y \mid B}(x, y)$ with $B=\{X+Y \geq 4\}$.

Exercise - Conditional PDF

X and Y are RVs with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{15} & 0 \leq x \leq 5,0 \leq y \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the conditional PDF $f_{X, Y \mid B}(x, y)$ with $B=\{X+Y \geq 4\}$.

$$
\mathrm{P}[B]=1 / 2
$$

$f_{X, Y \mid B}(x, y)= \begin{cases}\frac{2}{15} & 0 \leq x \leq 5,0 \leq y \leq 3, x+y \geq 4 \\ 0 & \text { otherwise }\end{cases}$

Conditional expectations

For RVs X and Y and event B, the conditional expected value of $g(X, Y)$ given event B is given by

$$
\begin{aligned}
& \mathrm{E}[g(X, Y) \mid B]=\sum_{x \in S_{X}} \sum_{y \in S_{Y}} g(x, y) P_{X, Y \mid B}(x, y) \\
& \mathrm{E}[g(X, Y) \mid B]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y \mid B}(x) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Exercise - Conditional PDF

X and Y are RVs with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{15} & 0 \leq x \leq 5,0 \leq y \leq 3 \\ 0 & \text { otherwise } .\end{cases}
$$

The conditional PDF $f_{X, Y \mid B}(x, y)$ with
$B=\{X+Y \geq 4\}$ is
$f_{X, Y \mid B}(x, y)= \begin{cases}\frac{2}{15} & 0 \leq x \leq 5,0 \leq y \leq 3, x+y \geq 4 \\ 0 & \text { otherwise }\end{cases}$
Calculate $\mathrm{E}[X Y \mid B]$

Exercise - Conditional PDF

X and Y are RVs with joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{15} & 0 \leq x \leq 5,0 \leq y \leq 3 \\ 0 & \text { otherwise } .\end{cases}
$$

The conditional PDF $f_{X, Y \mid B}(x, y)$ with
$B=\{X+Y \geq 4\}$ is
$f_{X, Y \mid B}(x, y)= \begin{cases}\frac{2}{15} & 0 \leq x \leq 5,0 \leq y \leq 3, x+y \geq 4 \\ 0 & \text { otherwise }\end{cases}$

Calculate $\mathrm{E}[X Y \mid B]$

$$
\mathrm{E}[X Y \mid B]=\int_{0}^{3} \int_{4-y}^{5} x y \frac{2}{15} \mathrm{~d} x \mathrm{~d} y=\cdots
$$

Conditioning by a random variable

So far we conditioned on an event $(x, y) \in B$.
Special case: conditioning on partial knowledge on one of the variables:
$B=\{X=x\}$ or $B=\{Y=y\}$.

For example: knowing $Y=y$ completely determines RV Y, and changes the knowledge we have about X (assuming Y and X are not independent).

Conditional PMF: $P_{X \mid Y}(x \mid y)=\frac{P_{X, Y}(x, y)}{P_{Y}(y)}$
Conditional PDF: $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$

Exercise 7.4.4

Z is a $\operatorname{Gaussian}(0,1)$ noise random variable that is independent of X, and $Y=X+Z$ is a noisy observation of X. What is the conditional PDF $f_{Y \mid X}(y \mid x)$?

Exercise 7.4.4

Z is a $\operatorname{Gaussian}(0,1)$ noise random variable that is independent of X, and $Y=X+Z$ is a noisy observation of X. What is the conditional PDF $f_{Y \mid X}(y \mid x)$?

Given $X=x$, we know that $Y=x+Z$.
Z is Gaussian $(0,1)$. Adding x will shift the mean to x.
Thus, Y is Gaussian $(x, 1)$:

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi}} e^{-(y-x)^{2} / 2}
$$

Exercise 7.4.4

Z is a $\operatorname{Gaussian}(0,1)$ noise random variable that is independent of X, and $Y=X+Z$ is a noisy observation of X. What is the conditional PDF $f_{Y \mid X}(y \mid x)$?

More "systematic" approach:

$$
\begin{aligned}
F_{Y \mid X}(y \mid x) & =\mathrm{P}[Y \leq y \mid X=x] \\
& =\mathrm{P}[x+Z \leq y \mid X=x] \\
& =\mathrm{P}[x+Z \leq y] \quad(Z \text { independent of } X) \\
& =\mathrm{P}[Z \leq y-x] \\
& =F_{Z}(y-x) \\
f_{Y \mid X}(y \mid x) & =\frac{\mathrm{d} F_{Y \mid X}(y \mid x)}{\mathrm{d} y}=\frac{\mathrm{d} F_{Z}(y-x)}{\mathrm{d} y}=f_{Z}(y-x) .
\end{aligned}
$$

Conditional expectation

Discrete random variables:

$$
\mathrm{E}[g(X, Y) \mid Y=y]=\sum_{x \in S_{X}} g(x, y) P_{X \mid Y}(x \mid y)
$$

If X and Y are independent, then

$$
\begin{aligned}
P_{X \mid Y}(x \mid y) & =P_{X}(x), \text { and } P_{Y \mid X}(y \mid x)=P_{Y}(y) \\
\mathrm{E}[X \mid Y=y] & =\sum_{x \in S_{X}} x P_{X \mid Y}(x \mid y)=\sum_{x \in S_{X}} x P_{X}(x)=\mathrm{E}[X]
\end{aligned}
$$

Continuous random variables: similarly,

$$
\mathrm{E}[g(X, Y) \mid Y=y]=\int_{-\infty}^{\infty} g(x, y) f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

If X and Y are independent, then

$$
\mathrm{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \mathrm{d} x=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x=\mathrm{E}[X]
$$

Example - conditional PDF

$$
f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional PDFs $f_{X \mid Y}(x \mid y)$ and $f_{Y \mid X}(y \mid x)$.

$$
\begin{aligned}
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} x=\int_{y}^{1} 2 \mathrm{~d} x=2(1-y), \text { for } 0 \leq y \leq 1 \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y=\int_{0}^{x} 2 \mathrm{~d} y=2 x, \text { for } 0 \leq x \leq 1
\end{aligned}
$$

Example - conditional PDF

$$
\begin{aligned}
& f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& f_{Y}(y)=2(1-y), \text { for } 0 \leq y \leq 1 \\
& f_{X}(x)=2 x, \text { for } 0 \leq x \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}= \begin{cases}\frac{1}{x} & 0 \leq y \leq x \leq \mathbb{} \\
0 & \text { otherwise }\end{cases} \\
& f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}\frac{1}{1-y} & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(uniform PDFs!)

Example - conditional PDF

$$
\begin{aligned}
& f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} & 0 \leq y \leq x \\
0 & \text { otherwise }\end{cases} \\
& f_{X \mid Y}(x \mid y)
\end{aligned}=\left\{\left.\begin{array}{ll}
\frac{1}{1-y} & y \leq x \leq 1 \\
0 & \text { otherwise }
\end{array} \quad 1 \begin{array}{l}
y
\end{array} \right\rvert\,\right.
$$

Interpretation:

- $x=0.5$. Most likely value? $f_{Y \mid X}(y)$: any value $0 \leq y \leq 0.5$
- $x=0.01$. Most likely value? $f_{Y \mid X}(y)$: any value $0 \leq y \leq 0.01$

For dependent X and Y, knowledge of X changes knowledge on Y.

Example - conditional expected value

$$
\begin{aligned}
& f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} & 0 \leq y \leq x \\
0 & \text { otherwise }\end{cases} \\
& f_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{1-y} & y \leq x \leq 1 \\
0 & \text { otherwise } .\end{cases} \\
& \mathrm{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \mathrm{d} x=\int_{y}^{1} \frac{x}{1-y} \mathrm{~d} x=\left[\frac{x^{2}}{2(1-y)}\right]_{x=y}^{x=1} \\
& =\frac{1+y}{2}
\end{aligned}
$$

Conditional expectation

Notice the difference between

$$
\mathrm{E}[X \mid Y=y]=\frac{1+y}{2}
$$

and

$$
\mathrm{E}[X \mid Y]=\frac{1+Y}{2}
$$

- $\mathrm{E}[X \mid Y=y]$ is written in terms of the realization y, as the conditional information says $Y=y$.
- $\mathrm{E}[X \mid Y]$ is still a RV because of the conditioning on Y : the PDF is $f_{Y}(y)$.

Theorem (iterated expectation): $\mathrm{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[X]$.

Example - iterated expectation

Using the previous example,

$$
\mathrm{E}[X \mid Y]=\frac{1+Y}{2} ; \quad f_{Y}(y)=2(1-y), \quad 0 \leq y \leq 1
$$

- Iterated expectations gives

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}[\mathrm{E}[X \mid Y]]=\int_{-\infty}^{\infty} \mathrm{E}[X \mid Y] f_{Y}(y) \mathrm{d} y \\
& =\int_{0}^{1} \frac{1+y}{2} 2(1-y) \mathrm{d} y=\int_{0}^{1}\left(1-y^{2}\right) \mathrm{d} y=\frac{2}{3}
\end{aligned}
$$

- Direct: with $f_{X}(x)=2 x(0 \leq x \leq 1)$

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x=\int_{0}^{1} 2 x^{2} \mathrm{~d} x=\frac{2}{3}
$$

Bivariate Gaussian

$$
\begin{aligned}
& f_{X, Y}(x, y)=\frac{\exp \left[-\frac{\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-\frac{2 \rho_{X, Y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}}{2\left(1-\rho_{X, Y}^{2}\right)}\right]}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}}} \\
& =\cdots \text { eq.(5.69) } \cdots=\underbrace{\frac{e^{-\left(x-\mu_{X}\right)^{2} / \sigma_{X}^{2}}}{\sigma_{X} \sqrt{2 \pi}}}_{f_{X}(x)} \cdot \underbrace{\frac{e^{-\left(y-\tilde{\mu}_{Y}\right)^{2} / \tilde{\sigma}_{Y}^{2}}}{\tilde{\sigma}_{Y} \sqrt{2 \pi}}}_{f_{Y \mid X}(y \mid x)} \\
& \text { with } \tilde{\mu}_{Y}=\mu_{Y}+\rho_{X, Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right), \quad \tilde{\sigma}_{Y}=\sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}} .
\end{aligned}
$$

Given $X=x$, the conditional probability model of Y is Gaussian, with $\mathrm{E}[Y \mid X=x]=\tilde{\mu}_{Y}$ and $\operatorname{var}[Y \mid X=x]=\tilde{\sigma}_{Y}$.

Exercise 7.6.2

X and Y are jointly Gaussian random variables with $\mathrm{E}[X]=\mathrm{E}[Y]=0$ and $\operatorname{var}[X]=\operatorname{var}[Y]=1$. Furthermore, $\mathrm{E}[Y \mid X]=X / 2$. Find $f_{X, Y}(x, y)$.

From the problem statement, we learn that

$$
\mu_{X}=\mu_{Y}=0, \quad \sigma_{X}^{2}=\sigma_{Y}^{2}=1
$$

From Theorem 7.16, the conditional expectation of Y given X is

$$
\mathrm{E}[Y \mid X]=\tilde{\mu}_{Y}(X)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)=\rho X
$$

In the problem statement, we learn that $\mathrm{E}[Y \mid X]=X / 2$. Hence $\rho=1 / 2$. From the expression of the PDF of a bivariate Gaussian, the joint PDF is

$$
f_{X, Y}(x, y)=\frac{1}{\sqrt{3 \pi^{2}}} e^{-2\left(x^{2}-x y+y^{2}\right) / 3}
$$

To do for this week:

- Read chapter 7, 8
- Make (some of) the indicated exercises: 7.1.1, 7.2.3, 7.2.9, 7.3.1, 7.3.3, 7.3.5, 7.3.9, 7.5.1, 7.5.3, 7.5.5 8.1.3, 8.2.3, 8.4.1, 8.4.3, 8.4.5

