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Today

• Extension of last week’s multiple variables: random vectors

• Conditional probability models:

• Conditioning a random variable by an event

• Conditioning two random variables by an event

• Conditioning by another random variable
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(Ch. 8) Random vectors
Why random vectors?

• More concise representations.
• Allows to use principles from linear algebra.

Notation

• A random vector is the column vector

X =

 X1
...

XN

 = [X1, · · · ,XN ]T

• Transpose operator: ·T or ·′
• Sample (realization) of random vector: x = [x1, · · · , xN ]T

• CDF of a random vector X : FX (x) = FX1,··· ,XN
(x1, · · · , xN)

• PMF of a (discrete) random vector X :
PX (x) = PX1,··· ,XN

(x1, · · · , xN)
• PDF of a (continuous) random vector X :
fX (x) = fX1,··· ,XN

(x1, · · · , xN)
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Example

fX (x) =

{
6e−aT x x ≥ 0

0 otherwise
with a = [1 2 3]T .

What is the CDF FX (x)?

fX (x) =

{
6e−aT x x ≥ 0

0 otherwise
=

{
6e−x1−2x2−3x3 xi ≥ 0∀ i
0 otherwise

FX (x) =

{∫ x1
0

∫ x2
0

∫ x3
0 6e−u1−2u2−3u3du1du2du3 xi ≥ 0 ∀ i

0 otherwise

=

{
(1− e−x1)(1− e−2x2)(1− e−3x3) xi ≥ 0 ∀ i
0 otherwise
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Pairs of random vectors

Joint CDF, PDF and PMF of two random vectors X and Y :

• CDF of random vectors X and Y :

FX ,Y (x , y) = FX1,··· ,XN ,Y1,··· ,YN
(x1, · · · , xN , y1, · · · , yN)

• PMF of (discrete) random vectors X and Y :

PX ,Y (x , y) = PX1,··· ,XN ,Y1,··· ,YN
(x1, · · · , xN , y1, · · · , yN)

• PDF of (continuous) random vectors X and Y :

fX ,Y (x , y) = fX1,··· ,XN ,Y1,··· ,YN
(x1, · · · , xN , y1, · · · , yN)
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Independent random vectors

Two random vectors X and Y are independent if

• Discrete RVs: PX ,Y (x , y) = PX (x)PY (y)

• Continuous RVs: fX ,Y (x , y) = fX (x)fY (y)

Expected values for random vectors

For a random matrix A, with Aij the (i , j)th element of A, E[A] is a
matrix with E[Aij ] as its (i , j)th element.

The expected value of the random vector X therefore equals

E[X ] =

 E[X1]
...

E[XN ]
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The correlation matrix

Now consider the vector X =

 X1
...

XN

, shown for N = 3.

XXT =

 X1

X2

X3

 [X1, X2, X3] =

 X 2
1 X1X2 X1X3

X2X1 X 2
2 X2X3

X3X1 X3X2 X 2
3



E
[
XXT

]
=

 E[X 2
1 ] E[X1X2] E[X1X3]

E[X2X1] E[X 2
2 ] E[X2X3]

E[X3X1] E[X3X2] E[X 2
3 ]


=

 E[X 2
1 ] rX1X2 rX1X3

rX2X1 E[X 2
2 ] rX2X3

rX3X1 rX3X2 E[X 2
3 ]


RX = E

[
XXT

]
is known as the correlation matrix and extends the

concept of the correlation E[XY ] to vectors.
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The covariance matrix

Similarly, we can define the covariance matrix

CX = E
[
(X − E [X ])(X − E [X ])T

]
= RX − E[X ]E[X ]T .

For the vector X = [X1,X2,X3]T we get

CX = E
[
XXT

]
−E[X ]E [X ]T =

 var(X1) cov(X1,X2) cov(X1,X3)
cov(X2,X1) var(X2) cov(X2,X3)
cov(X3,X1) cov(X3,X2) var(X3)

 .
If the Xi are uncorrelated (cov(Xi ,Xj) = 0), then CX is diagonal.

If the random variables {Xi} are independent, identically distributed
(i.i.d.), then CX = σ2I .
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Cross-covariance & cross-correlation matrix
For two random vectors, their cross-correlation matrix is defined as

RXY = E
[
XY T

]
and their cross-covariance matrix is

CXY = E
[
XY T

]
− E [X ] E[Y T ]

Linear transformations

If Y = AX + b is a linear transformation of a random vector X , then

E[Y ] = A E[X ] + b
CY = ACXAT

CYX = ACX
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Exercise 8.5.2
X = [X1,X2]T is the Gaussian random vector with E[X ] = [0, 0]T and
covariance matrix

CX =

[
1 1
1 2

]
.

What is the PDF of Y = [2, 1]X?

Y is the sum of two Gaussians, is therefore Gaussian with mean

E[Y ] = E[2X1 + X2] = 0

and variance
var[Y ] = E[Y 2]− 0 = E[YY T ]

= E

{
[2 1]

[
X1

X2

]
[X1 X2]

[
2
1

]}
= [2 1]E

{[
X1

X2

]
[X1 X2]

}[
2
1

]
= [2 1]

[
1 1
1 2

] [
2
1

]
= 10
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Gaussian variables

In Ch. 5 we saw

fX ,Y (x , y) =

exp

[
−

(
x−E[X ]
σX

)2
− 2ρ(x−E[X ])(y−E[Y ])

σX σY
+
(

y−E[Y ]
σY

)2

2(1−ρ2)

]
2πσXσY

√
1− ρ2

• Extending this to higher dimensions is rather impractical.

• Using vector notation a very concise and useful expression can be
obtained.
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Gaussian random vectors
Let X be a vector of correlated Gaussian RVs: X = [X1,X2, · · · ,XN ]T .

The PDF fX (x) is then given by

fX (x) =
exp

[
−1

2 (x − E[X ])T C−1X (x − E[X ])
]

(2π)N/2 det(CX )1/2

Special case: N = 2

CX =

[
σ2X ρσXσY

ρσXσY σ2Y

]
det(CX ) = σ2Xσ

2
Y (1− ρ2)

C−1X =
1

σ2Xσ
2
Y (1− ρ2)

[
σ2Y −ρσXσY

−ρσXσY σ2X

]
Verify that this leads to the expression on the previous slide!
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Uncorrelated Gaussian random vectors
PDF of Gaussian random vector:

fX (x) =
exp

[
−1

2 (x − E[X ])T C−1X (x − E[X ])
]

(2π)N/2 det(CX )1/2

Let X be a vector of uncorrelated Gaussian RVs: X = [X1, · · · ,XN ]T .

• CX = diag(σ2X1
, σ2X2

, · · · , σ2XN
)

• det(CX ) =
∏N

i=1 σ
2
Xi

• (x − E[X ])T C−1X (x − E[X ]) =
∑N

i=1
(xi−E[Xi ])

2

σ2
Xi

The PDF fX (x) is then given by

fX (x) =
N∏
i=1

exp[−(xi − E[Xi ])
2/2σ2Xi

]√
2πσ2xi

=
N∏
i=1

fXi
(xi )

Hence, the variables X1, · · · ,XN are independent.
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Linear transformation of random vectors

Let X be a continuous random vector and A an invertible matrix.
Then, Y = AX + b has the PDF

fY (y) =
1

| det(A)|
fX
(
A−1 (y − b)

)

Derivation:

FY (y) = P[Y ≤ y ] = P[AX + b ≤ y ] = P[X ≤ A−1(y − b)]

= FX (A−1(y − b))

Next, take derivatives to find fY (y).

2. random vectors and conditional probability 14 / 43



Transformation of Gaussian random vectors

Let X be a Gaussian random vector and A an invertible matrix.

What is the PDF of Y = AX + b?

fY (y) =
1

| det(A)|
fX
(
A−1 (y − b)

)
=

exp
[
−1

2

(
A−1(y − b)− E [X ]

)T C−1X
(
A−1(y − b)− E [X ]

)]
(2π)N/2| det(A)| det(CX )1/2

.

Using some manipulations, this can be rewritten as

fY (y) =
exp

[
−1

2 (y − E [Y ])T A−TC−1X A−1 (y − E[Y ])
]

(2π)N/2 det(ACXAT )1/2
.

Y is thus also Gaussian with E[Y ] = A E[X ] + b and CY = ACXAT

(But, we already knew this: sum of Gaussians is Gaussian.)
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Ch.7 Conditional probability models

Model: Y = X + N

Imagine we observe realizations of Y , while our interest is X .

• Derive PX (x)?

• Probability of X given an observation y : PX |Y (x |y)?
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Conditional probability

Sometimes the occurrence of one event influences the probability of
occurrence of other events.

• P[odd number] ?

• P[odd number if we know that the outcome is in event B] ?
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Conditional probability
Interpretation: P[A|B] is the probability of A, given that the event B
has already occurred.

P[A|B] =
P[A ∩ B]

P[B]
=

P[A,B]

P[B]
(Bayes’ theorem)

P[A,B] = P[A|B]P[B]
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Example (1)

Event B: “Even outcome” when rolling the dice
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Example (2)

Event A: “3 or more” when rolling the dice.

How large is P[A|B]?
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Example (3)

Different B! How large is P[A|B] now?
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Ch.7 Conditional probability models

Starting from the conditional probability, we can also define the
conditional CDF:

• Conditional probability (Bayes’ theorem)

P[A|B] =
P[A,B]

P[B]
=

P[B|A]P[A]

P[B]

• Conditional CDF
Let event A = {X ≤ x}. Then

P[A|B] = P[X ≤ x |B] .
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Conditioning the CDF, PMF and PDF by an event

CDF, PMF and PDF conditioned by an event:

• Conditional CDF: FX |B(x) = P[X ≤ x |B]

• Conditional PMF: PX |B(x) = P[X = x |B]

• Conditional PDF: fX |B(x) =
dFX |B(x)

dx

Conditioning by an event changes the probabilities:

PX |B(x) =


PX (x)

P[B]
x ∈ B

0 otherwise
fX |B(x) =


fX (x)

P[B]
x ∈ B

0 otherwise

Those outcomes x where x /∈ B will get zero probability, while those
outcomes x where x ∈ B will get proportionally higher.

2. random vectors and conditional probability 23 / 43



Example: calculating the conditional PMF

Let X be the time in integer minutes one waits for a bus:

PX (x) =

{
1
20 x = 1, 2, ..., 20

0 otherwise.

Suppose the bus has not arrived by the 6th minute. What is the
conditional PMF of the waiting time?

Let A be the event that the bus has not yet arrived after 6 minutes:
P[A] = 14/20.

PX |X>6(x) = PX |A(x) =

{
1/20
14/20 = 1

14 x = 7, 8, ..., 20

0 otherwise.
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Exercise 7.1.1
Discrete random variable X has CDF

FX (x) =


0 x < −3,

0.4 −3 ≤ x < 5,

0.8 5 ≤ x < 7,

1 x ≥ 7.

Find the conditional CDF FX |X>0(x) and PMF PX |X>0(x).

PX (x) =


0.4 x = −3,

0.4 x = 5,

0.2 x = 7,

0 otherwise

Event B = {X > 0} has probability P[X > 0] = PX (5) + PX (7) = 0.6.

PX |X>0(x) =

{
PX (x)
P[X>0] x ∈ B,

0 otherwise
=


2/3 x = 5,

1/3 x = 7

0 otherwise
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PDF & PMF with a partition

Let B1,B2, · · · ,BM be M different (non-overlapping) events, together
covering all possible outcomes SX : a partition.

The law of total probability says

(discrete) PX (x) =
M∑
i=1

PX |Bi
(x)P(Bi )

(continuous) fX (x) =
M∑
i=1

fX |Bi
(x)P(Bi )

E[X ] =
M∑
i=1

E[X |Bi ]P[Bi ]
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PDF & PMF with a partition

Example The height H of a Male is Gaussian(180,10). The height H of
a Female is Gaussian(170,10). There are 4 times more Males than
Females in class.

P(M) = 4/5 , P(F ) = 1/5

fH|M(h) =
1

100
√

2π
e−(h−180)

2/200 , fH|F (h) =
1

100
√

2π
e−(h−170)

2/200 .

Then

fH(h) = fH|M(h)P(M) + fH|F (h)P(F )

E[H] = E[H|M]P[M] + E[H|F ]P[F ] = 180 · 4

5
+ 170 · 1

5
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Conditioning multiple RVs by an event

For RVs X and Y and event B, the joint conditional PMF and PDF are
given by

PX ,Y |B(x , y) = P[X = x ,Y = y |B] =

{
PX ,Y (x ,y)

P[B] (x , y) ∈ B

0 otherwise

fX ,Y |B(x , y) =

{
fX ,Y (x ,y)

P[B] (x , y) ∈ B

0 otherwise

Those outcomes x and y where (x , y) /∈ B will get zero probability,
while those outcomes x and y where (x , y) ∈ B will get proportionally
higher.
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Exercise – Conditional PDF

X and Y are RVs with joint PDF

fX ,Y (x , y) =

{
1
15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3

0 otherwise.

Calculate the conditional PDF fX ,Y |B(x , y) with B = {X + Y ≥ 4}.

P[B] = 1/2

fX ,Y |B(x , y) =

{
2
15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3, x + y ≥ 4

0 otherwise
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Conditional expectations

For RVs X and Y and event B, the conditional expected value of
g(X ,Y ) given event B is given by

E[g(X ,Y )|B] =
∑
x∈SX

∑
y∈SY

g(x , y)PX ,Y |B(x , y)

E[g(X ,Y )|B] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fX ,Y |B(x)dxdy
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Exercise – Conditional PDF
X and Y are RVs with joint PDF

fX ,Y (x , y) =

{
1
15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3

0 otherwise.

The conditional PDF fX ,Y |B(x , y) with
B = {X + Y ≥ 4} is

fX ,Y |B(x , y) =

{
2
15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3, x + y ≥ 4

0 otherwise

Calculate E[XY |B]

E[XY |B] =

∫ 3

0

∫ 5

4−y
xy

2

15
dxdy = · · ·
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Conditioning by a random variable

So far we conditioned on an event (x , y) ∈ B.

Special case: conditioning on partial knowledge on one of the variables:
B = {X = x} or B = {Y = y}.

For example: knowing Y = y completely determines RV Y , and
changes the knowledge we have about X (assuming Y and X are not
independent).

Conditional PMF: PX |Y (x |y) =
PX ,Y (x , y)

PY (y)

Conditional PDF: fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
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Exercise 7.4.4

Z is a Gaussian(0,1) noise random variable that is independent of X ,
and Y = X + Z is a noisy observation of X . What is the conditional
PDF fY |X (y |x)?
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Exercise 7.4.4

Z is a Gaussian(0,1) noise random variable that is independent of X ,
and Y = X + Z is a noisy observation of X . What is the conditional
PDF fY |X (y |x)?

Given X = x , we know that Y = x + Z .

Z is Gaussian(0,1). Adding x will shift the mean to x .

Thus, Y is Gaussian(x ,1):

fY |X (y |x) =
1√
2π

e−(y−x)
2/2
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Exercise 7.4.4
Z is a Gaussian(0,1) noise random variable that is independent of X ,
and Y = X + Z is a noisy observation of X . What is the conditional
PDF fY |X (y |x)?

More “systematic” approach:

FY |X (y |x) = P[Y ≤ y |X = x ]

= P[x + Z ≤ y |X = x ]

= P[x + Z ≤ y ] (Z independent of X )

= P[Z ≤ y − x ]

= FZ (y − x)

fY |X (y |x) =
dFY |X (y |x)

dy
=

dFZ (y − x)

dy
= fZ (y − x) .
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Conditional expectation
Discrete random variables:

E [g(X ,Y )|Y = y ] =
∑
x∈SX

g(x , y)PX |Y (x |y)

If X and Y are independent, then

PX |Y (x |y) = PX (x), and PY |X (y |x) = PY (y)

E [X |Y = y ] =
∑
x∈SX

x PX |Y (x |y) =
∑
x∈SX

x PX (x) = E [X ]

Continuous random variables: similarly,

E [g(X ,Y )|Y = y ] =

∫ ∞
−∞

g(x , y)fX |Y (x |y)dx

If X and Y are independent, then

E [X |Y = y ] =

∫ ∞
−∞

x fX |Y (x |y)dx =

∫ ∞
−∞

x fX (x)dx = E [X ]
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Example – conditional PDF

fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise

Find the conditional PDFs fX |Y (x |y) and fY |X (y |x).

fY (y) =

∫ ∞
−∞

fX ,Y (x , y)dx =

∫ 1

y
2 dx = 2(1− y), for 0 ≤ y ≤ 1

fX (x) =

∫ ∞
−∞

fX ,Y (x , y)dy =

∫ x

0
2 dy = 2x , for 0 ≤ x ≤ 1.

2. random vectors and conditional probability 35 / 43



Example – conditional PDF

fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise

fY (y) = 2(1− y) , for 0 ≤ y ≤ 1

fX (x) = 2x , for 0 ≤ x ≤ 1

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
=

{
1
x 0 ≤ y ≤ x ��≤ 1

0 otherwise

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
=

{
1

1−y ��0 ≤ y ≤ x ≤ 1

0 otherwise.

(uniform PDFs!)
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Example – conditional PDF

fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise

fY |X (y |x) =

{
1
x 0 ≤ y ≤ x

0 otherwise

fX |Y (x |y) =

{
1

1−y y ≤ x ≤ 1

0 otherwise.

Interpretation:

• x = 0.5. Most likely value? fY |X (y): any value 0 ≤ y ≤ 0.5

• x = 0.01. Most likely value? fY |X (y): any value 0 ≤ y ≤ 0.01

For dependent X and Y , knowledge of X changes knowledge on Y .
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Example – conditional expected value

fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise

fY |X (y |x) =

{
1
x 0 ≤ y ≤ x

0 otherwise

fX |Y (x |y) =

{
1

1−y y ≤ x ≤ 1

0 otherwise.

E [X |Y = y ] =

∫ ∞
−∞

x fX |Y (x |y)dx =

∫ 1

y

x

1− y
dx =

[
x2

2(1− y)

]x=1

x=y

=
1 + y

2
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Conditional expectation

Notice the difference between

E [X |Y = y ] =
1 + y

2

and

E [X |Y ] =
1 + Y

2
.

• E [X |Y = y ] is written in terms of the realization y , as the
conditional information says Y = y .

• E [X |Y ] is still a RV because of the conditioning on Y : the PDF is
fY (y).

Theorem (iterated expectation): E[E[X |Y ]] = E[X ].
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Example – iterated expectation
Using the previous example,

E[X |Y ] =
1 + Y

2
; fY (y) = 2(1− y) , 0 ≤ y ≤ 1

• Iterated expectations gives

E[X ] = E[E[X |Y ]] =

∫ ∞
−∞

E[X |Y ]fY (y)dy

=

∫ 1

0

1 + y

2
2(1− y)dy =

∫ 1

0
(1− y2)dy =

2

3

• Direct: with fX (x) = 2x (0 ≤ x ≤ 1)

E[X ] =

∫ ∞
−∞

x fX (x)dx =

∫ 1

0
2x2dx =

2

3
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Bivariate Gaussian

fX ,Y (x , y) =

exp

[
−

(
x−µX
σX

)2
−

2ρX ,Y (x−µX )(y−µY )

σX σY
+
(

y−µY
σY

)2

2(1−ρ2X ,Y )

]
2πσXσY

√
1− ρ2X ,Y

= · · · eq.(5.69) · · · =
e−(x−µX )

2/σ2
X

σX
√

2π︸ ︷︷ ︸
fX (x)

· e
−(y−µ̃Y )2/σ̃2

Y

σ̃Y
√

2π︸ ︷︷ ︸
fY |X (y |x)

with µ̃Y = µY + ρX ,Y
σY
σX

(x − µX ), σ̃Y = σY
√

1− ρ2X ,Y .

Given X = x , the conditional probability model of Y is Gaussian, with
E[Y |X = x ] = µ̃Y and var[Y |X = x ] = σ̃Y .

2. random vectors and conditional probability 41 / 43



Exercise 7.6.2
X and Y are jointly Gaussian random variables with E[X ] = E[Y ] = 0
and var[X ] = var[Y ] = 1. Furthermore, E[Y |X ] = X/2. Find
fX ,Y (x , y).

From the problem statement, we learn that

µX = µY = 0 , σ2X = σ2Y = 1 .

From Theorem 7.16, the conditional expectation of Y given X is

E[Y |X ] = µ̃Y (X ) = µY + ρ
σY
σX

(X − µX ) = ρX

In the problem statement, we learn that E[Y |X ] = X/2. Hence
ρ = 1/2. From the expression of the PDF of a bivariate Gaussian, the
joint PDF is

fX ,Y (x , y) =
1√
3π2

e−2(x
2−xy+y2)/3 .
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To do for this week:

• Read chapter 7, 8

• Make (some of) the indicated exercises:
7.1.1, 7.2.3, 7.2.9, 7.3.1, 7.3.3, 7.3.5, 7.3.9, 7.5.1, 7.5.3, 7.5.5
8.1.3, 8.2.3, 8.4.1, 8.4.3, 8.4.5
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