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Outline

Strategies to improve A/D conversion

● Oversampling

● Differential quantization

● Discrete-time model of sigma-delta ADCs

● Noise shaping
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Signal-to-quantization-noise ratio of the quantizer

SQNR = 10 log10
σ2
x

σ2
z

, with σ2
z =

∆2

12
and ∆ = R

2B+1

● the range of the input (which is proportional to σx) should match the
range of the quantizer R

● according to formulas above, σz is proportional to ∆, but ∆ is
proportional to R

⇓
● for a given B, σ2

z is proportional to σ2
x

⇓
● if we aim for maintaining a certain SQNR, reducing the variance of the

input signal to the quantizer reduces the number of necessary bits.

Strategies to improve SQNR:

● Differential quantization

● Oversampling
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Differential quantization
Idea: to reduce the range of the input to the quantizer, let us quantize
the differential signal!

d[n] = x[n] − x[n − 1]
What is the variance of the differential signal?

σ2
d = E [d2[n]] = E [x[n] − x[n − 1]]2

= E [x2[n]] − 2E [x[n]x[n − 1]] + E [x2[n − 1]] = ... =
= 2σ2

x[1 − rx[1]], with rx[1] = Rx[1]/Rx[0]

● differential quantization is advantageous if rx[1] > 0.5

● high autocorrelation at lag 1 (i.e. high rx(1)) can be achieved by
oversampling (= sampling well above Nyquist)!

● Even better alternative: prediction!
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Differential predictive quantizer

Let us now quantize the following quantity instead:

d(n) = x(n) − ax(n − 1)

What is the optimal choice of a? (exercise 6.16)

σ2
d = E [d2[n]] = E [x[n] − ax[n − 1]]2

= E [x2[n]] − 2E [ax[n]x[n − 1]] + E [a2x2[n − 1]] =
= (1 + a2)σ2

x − 2aRx[1]

Setting the derivative of σ2
d to 0 yields the optimal value for a = rx(1).

Then, by substituting back, we obtain σ2
d = σ2

x(1− r2
x (1)) ≤ σ2

x indicating
that differental predictive quantization is always advantageous!
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Sampling and quantization noise

Recall that the spectrum of a sampled signal equals

X (f ) = Fs
∞
∑

k=−∞
Xa(F + kFs)

The effect of quantizaion is an addition of white quantization noise with
power σ2

z .
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Oversampling and quantization noise

In case of oversampling by a factor of D (see (b) above), the signal to
quantization noise power ration is increased by a factor D.
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Sigma-delta modulator
Let us combine the two principles, i.e. differential quantization and
oversampling!

● coder consists of the predictor and the quantizer
● predictor provides an estimate x̂[n] of x[n] using its past sample(s) in case of a first

(or higher order) predictor
● with a = 1 the predictor is a simple accumulator
● quantizer quantizes the difference d[n] = x[n] − x̂[n]
● oversampling allows the use of a 1-bit quantizer, providing a staircase approximation of

the signal
● decoder reconstructs the signal from the differential quantized values
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Sigma-delta modulator

To reduce distortion, we can introduce an integrator before the differential
quantizer. Uniting the two integrators yields a simpler circuit, where a single
intergrator (sigma) is followed by a differentiaror (delta).
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Sigma-delta modulator: discrete model
Let us model the SDM as a discrete system: the integrator as H(z) and
the quantizer as an additive white noise!

The z-transform of the sequence dq(n) can be separated into a
response to the signal and a response to noise:

Dq(z) =
H(z)

1 +H(z)X (z) + 1

1 +H(z)E(z) =

= Hs(z)X (z) +Hn(z)E(z)
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Noise shaping

Let us work out the previous formula for Dq(z), with H(z) = z−1

1−z−1

Dq(z) =
H(z)

1 +H(z)X (z) + 1

1 +H(z)E(z) = ...

= z−1X (z) + (1 − z−1)E(z)

Therefore,

∣Hs(ω)∣ = 1 and ∣He(ω)∣ = 2∣sin(ω/2)∣
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Noise-shaping

● In case of oversampling, signal is restricted to the lowest (normalized)
frequencies, and noise power is spread over a relatively larger frequency
band (over the full range between 0 and 2π)

● The signal is not distorted by the system Hs .
● The noise is attenuated at low frequencies.
● Therefore, higher SNR can be achieved by oversampling (see exercise

6.20)
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Sigma-delta modulation

Summary

Oversampling A/D converters (=sigma-delta modulators) using 1-bit
quantization can achieve very good accuracy at low cost, based on the
principle of oversampling, differential quantization and noise shaping.
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