# Fast Fourier Transform (FFT) 

Borbala Hunyadi

Delft University of Technology, The Netherlands

## Recap: Discrete Fourier Transform

## Definition

The Discrete Fourier Transform (DFT) of a sequence $x[n]$ is

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi \frac{k n}{N}}, \text { for } 0 \leq k \leq N-1
$$

Applications:

- Filtering
- Spectral analysis


## Recap: Discrete Fourier Transform

## Definition

The Discrete Fourier Transform (DFT) of a sequence $x[n]$ is

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi \frac{k n}{N}}, \text { for } 0 \leq k \leq N-1
$$

Applications:

- Filtering
- Spectral analysis

Is DFT efficient enough?

## Computational complexity of the DFT

Let's define $W_{N}=e^{-j 2 \pi / N}$ ! Then the DFT can be expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Steps of the direct computation algorithm:

Stage 1:
Compute and store the values

$$
W_{N}^{\prime}=e^{-j 2 \pi I / N}=\cos (2 \pi I / N)-j \cdot \sin (2 \pi I / N)
$$

Stage 2:

$$
\begin{aligned}
& \text { for } k=0: N-1 \\
& X[k] \leftarrow x[0] \\
& \text { for } n=1: N-1 \\
& I=(k n)_{N} \\
& X[k] \leftarrow X[k]+x[n] W_{N}^{\prime} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

## Computational complexity of the DFT

Let's define $W_{N}=e^{-j 2 \pi / N}$ ! Then the DFT can be expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Steps of the direct computation algorithm:

Stage 1:

Compute and store the values

$$
W_{N}^{\prime}=e^{-j 2 \pi I / N}=\cos (2 \pi I / N)-j \cdot \sin (2 \pi I / N)
$$

Stage 2:

$$
\begin{aligned}
& \text { for } k=0: N-1 \\
& \begin{aligned}
X[k] & \leftarrow x[0] \\
& \text { for } n=1: N-1 \\
& \quad I=(k n)_{N} \\
& X[k] \leftarrow X[k]+x[n] W_{N}^{\prime}
\end{aligned} \\
& \text { end }
\end{aligned}
$$

## Computational complexity of the DFT

Let's define $W_{N}=e^{-j 2 \pi / N}$ ! Then the DFT can be expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Steps of the direct computation algorithm:

Stage 1:

Compute and store the values

$$
W_{N}^{\prime}=e^{-j 2 \pi I / N}=\cos (2 \pi I / N)-j \cdot \sin (2 \pi I / N)
$$

$$
\begin{aligned}
& \text { for } k=0: N-1 \\
& X[k] \leftarrow x[0] \\
& \text { for } n=1: N-1 \\
& I=(k n)_{N} \\
& X[k] \leftarrow X[k]+x[n] W_{N}^{\prime} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

multiplications and $N(N-1)$ complex additions
$N$ evaluations of $\sin$ and cos functions
Stage 2:

## Computational complexity of the DFT

Let's define $W_{N}=e^{-j 2 \pi / N}$ ! Then the DFT can be expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Steps of the direct computation algorithm:

Stage 1:

Compute and store the values

$$
W_{N}^{\prime}=e^{-j 2 \pi I / N}=\cos (2 \pi I / N)-j \cdot \sin (2 \pi I / N)
$$

$$
\begin{aligned}
& \text { for } k=0: N-1 \\
& X[k] \leftarrow x[0] \\
& \text { for } n=1: N-1 \\
& I=(k n)_{N} \\
& X[k] \leftarrow X[k]+x[n] W_{N}^{\prime} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

$N$ evaluations of $\sin$ and cos functions
$N^{2}$ complex
multiplications and
$N(N-1)$ complex
additions

+ overhead:
addressing, indexing...


## Computational complexity of the DFT

Let's define $W_{N}=e^{-j 2 \pi / N}$ ! Then the DFT can be expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Steps of the direct computation algorithm:
$O\left(N^{2}\right)$ - very costly

Stage 1:

Compute and store the values

$$
W_{N}^{\prime}=e^{-j 2 \pi I / N}=\cos (2 \pi I / N)-j \cdot \sin (2 \pi I / N)
$$

$$
\begin{aligned}
& \text { for } k=0: N-1 \\
& X[k] \leftarrow x[0] \\
& \text { for } n=1: N-1 \\
& I=(k n)_{N} \\
& X[k] \leftarrow X[k]+x[n] W_{N}^{\prime} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

$N$ evaluations of $\sin$ and cos functions
Stage 2:
multiplications and $N(N-1)$ complex additions

+ overhead:
addressing, indexing...


## Fast Fourier Transform

- A family of computationally efficient algorithms to compute DFT
- Not a new transform!

Different working principles:
(1) Divide and conquer approach
(2) DFT as convolution: linear filtering approach

## Fast Fourier Transform

- A family of computationally efficient algorithms to compute DFT
- Not a new transform!

Different working principles:
(1) Divide and conquer approach
(2) DFT as convolution: linear filtering approach

## Divide and conquer FFT

Essential ingredients:

## Divide and conquer FFT

Essential ingredients:

- Break down the N-point DFT to a cascade of smaller-size DFTs


## Divide and conquer FFT

Essential ingredients:

- Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: I am thinking of a random number between 1 and 16. Can you guess which number is it?

## Divide and conquer FFT

Essential ingredients:

- Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: I am thinking of a random number between 1 and 16. Can you guess which number is it?

- Exploit symmetries


## Divide and conquer FFT

Essential ingredients:

- Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: I am thinking of a random number between 1 and 16. Can you guess which number is it?

- Exploit symmetries

$$
\begin{aligned}
& W_{N}^{k}=W_{N}^{k+N} \\
& W_{N}^{L k}=W_{N / L}^{k}
\end{aligned}
$$

## Radix-2 FFT

Radix-2 FFT is the most important divide and conquer type FFT algorithm. It can be used if $N=2^{r}$. This can always be achieved using zero-padding the sequence.

Decimation in time (DIT) solution:

- Divide the N long sequence $x[n]$ to $2 \mathrm{~N} / 2$ long sequences
- The N-point DFT of $x[n]$ can be computed by properly combining the $2 \mathrm{~N} / 2$-point DFTs
- Repeat the subdivision until the sequences are 2 samples long (2-point DFT)


## Radix-2 FFT

$N$-point DFT ( $N=2^{r}$ ) solved by a cascade of $r$ stages:


Figure 8.1.5 Three stages in the computation of an $N=8$-point DFT.

The following slides show the exact operations performed during these stages.

## 2-point DFT: How to compute in a simple way?

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Let us write out the expression for both DFT coefficients:

$$
\begin{aligned}
& x[0]=x[0]+x[1] W_{2}^{0}=x[0]+x[1] \\
& X[1]=x[0]+x[1] W_{2}^{1}=x[0]-x[1]
\end{aligned}
$$

## 2-point DFT: How to compute in a simple way?

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Let us write out the expression for both DFT coefficients:

$$
\begin{aligned}
& x[0]=x[0]+x[1] W_{2}^{0}=x[0]+x[1] \\
& x[1]=x[0]+x[1] W_{2}^{1}=x[0]-x[1]
\end{aligned}
$$



## 2-point DFT: How to compute in a simple way?

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \text { for } 0 \leq k \leq N-1
$$

Let us write out the expression for both DFT coefficients:

$$
\begin{aligned}
& x[0]=x[0]+x[1] W_{2}^{0}=x[0]+x[1] \\
& X[1]=x[0]+x[1] W_{2}^{1}=x[0]-x[1]
\end{aligned}
$$



The 2-point DFT coefficients are given by taking the sum and the difference of the samples. This simple operation is represented by the so-called butterfly diagram.

## Combine two 2-point DFTs into a 4-point DFT

$$
X[k]=\sum_{n=0}^{3} x[n] W_{4}^{k n}, \text { for } 0 \leq k \leq 3
$$

$$
X[k]=x[0]+x[1] W_{4}^{k}+x[2] W_{4}^{2 k}+x[3] W_{4}^{3 k}
$$

## Combine two 2-point DFTs into a 4-point DFT

$$
X[k]=\sum_{n=0}^{3} x[n] W_{4}^{k n}, \text { for } 0 \leq k \leq 3
$$

$$
\begin{aligned}
x[k] & =x[0]+x[1] W_{4}^{k}+x[2] W_{4}^{2 k}+x[3] W_{4}^{3 k} \\
& =\left(x[0]+x[2] W_{4}^{2 k}\right)+\left(x[1] W_{4}^{k}+x[3] W_{4}^{3 k}\right)
\end{aligned}
$$

Decimation in time: divide the sum to a sum of even and a sum of odd samples

## Combine two 2-point DFTs into a 4-point DFT

$$
\begin{aligned}
& \quad X[k]=\sum_{n=0}^{3} x[n] W_{4}^{k n}, \text { for } 0 \leq k \leq 3 \\
X[k] & =x[0]+x[1] W_{4}^{k}+x[2] W_{4}^{2 k}+x[3] W_{4}^{3 k} \\
& =\left(x[0]+x[2] W_{4}^{2 k}\right)+\left(x[1] W_{4}^{k}+x[3] W_{4}^{3 k}\right) \\
& =\left(x[0]+x[2] W_{4}^{2 k}\right)+W_{4}^{k}\left(x[1]+x[3] W_{4}^{2 k}\right)
\end{aligned}
$$

## Combine two 2-point DFTs into a 4-point DFT

$$
\begin{aligned}
& x[k]=\sum_{n=0}^{3} x[n] W_{4}^{k n}, \text { for } 0 \leq k \leq 3 \\
& x[k]= x[0]+x[1] W_{4}^{k}+x[2] W_{4}^{2 k}+x[3] W_{4}^{3 k} \\
&=\left(x[0]+x[2] W_{4}^{2 k}\right)+\left(x[1] W_{4}^{k}+x[3] W_{4}^{3 k}\right) \\
&=\left(x[0]+x[2] W_{4}^{2 k}\right)+W_{4}^{k}\left(x[1]+x[3] W_{4}^{2 k}\right) \\
&=\left(x[0]+x[2] W_{2}^{k}\right)+W_{4}^{k}\left(x[1]+x[3] W_{2}^{k}\right) \\
& \text { using the property } \\
& W_{N}^{L K}=W_{N / L}^{k} N=4 \text { and } \\
& L=2
\end{aligned}
$$

## Combine two 2-point DFTs into a 4-point DFT

$$
\begin{aligned}
& \quad X[k]=\sum_{n=0}^{3} x[n] W_{4}^{k n}, \text { for } 0 \leq k \leq 3 \\
& X[k]=x[0]+x[1] W_{4}^{k}+x[2] W_{4}^{2 k}+x[3] W_{4}^{3 k} \\
& =\left(x[0]+x[2] W_{4}^{2 k}\right)+\left(x[1] W_{4}^{k}+x[3] W_{4}^{3 k}\right) \\
& =\left(x[0]+x[2] W_{4}^{2 k}\right)+W_{4}^{k}\left(x[1]+x[3] W_{4}^{2 k}\right) \\
& = \\
& =\left(x[0]+x[2] W_{2}^{k}\right)+W_{4}^{k}\left(x[1]+x[3] W_{2}^{k}\right)=G[k]+W_{4}^{k} H[k]
\end{aligned}
$$

$G[k] \equiv x[0]+x[2] W_{2}^{k}$ is the 2-point DFT of even samples
$H[k] \equiv x[1]+x[3] W_{2}^{k}$ is the 2-point DFT of odd samples

## 4-point DFT from 2-point DFTs

$$
\begin{aligned}
& X[k]=G[k]+W_{4}^{k} H[k] \\
& X[0]=G[0]+H[0] \\
& X[1]=G[1]+W_{4} H[1] \\
& X[2]=G[2]+W_{4}^{2} H[2] \\
& X[3]=G[3]+W_{4}^{3} H[3]
\end{aligned}
$$

## 4-point DFT from 2-point DFTs

$$
\begin{aligned}
& X[k]=G[k]+W_{4}^{k} H[k] \\
& X[0]=G[0]+H[0] \\
& X[1]=G[1]+W_{4} H[1] \\
& X[2]=G[2]+W_{4}^{2} H[2]=G[0]+W_{4}^{2} H[0] \\
& X[3]=G[3]+W_{4}^{3} H[3]=G[1]+W_{4}^{3} H[1]
\end{aligned}
$$

$G[k]$ and $H[k]$ are 2-point DFTs, hence, 2-periodic

## 4-point DFT from 2-point DFTs

$$
\begin{aligned}
& X[k]=G[k]+W_{4}^{k} H[k] \\
& X[0]=G[0]+H[0] \\
& X[1]=G[1]+W_{4} H[1] \\
& X[2]=G[2]+W_{4}^{2} H[2]=G[0]+W_{4}^{2} H[0] \\
& X[3]=G[3]+W_{4}^{3} H[3]=G[1]+W_{4}^{3} H[1]
\end{aligned}
$$



## General case: N-point DFT from N/2-point DFTs

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

## General case: N-point DFT from N/2-point DFTs

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \\
& =\sum_{r=0}^{N / 2-1} x[2 r] W_{N}^{2 k r}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N}^{2 k r}
\end{aligned}
$$

Decimation in time: divide the sum to a sum of even and a sum of odd samples

## General case: N-point DFT from N/2-point DFTs

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \\
& =\sum_{r=0}^{N / 2-1} x[2 r] W_{N}^{2 k r}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N}^{2 k r} \\
& =\sum_{r=0}^{N / 2-1} x[2 r] W_{N / 2}^{k r}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N / 2}^{k r}
\end{aligned}
$$

```
using the property
WN
```


## General case: N-point DFT from N/2-point DFTs

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \\
& =\sum_{r=0}^{N / 2-1} x[2 r] W_{N}^{2 k r}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N}^{2 k r} \\
& =\sum_{r=0}^{N / 2-1} x[2 r] W_{N / 2}^{k r}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N / 2}^{k r}=G[k]+W_{N}^{k} H[k]
\end{aligned}
$$

$G[k]$ is the $N / 2$-point DFT of even samples, hence $\mathrm{N} / 2-$ periodic
$H[k]$ is the $N / 2$-point DFT of odd samples, hence $\mathrm{N} / 2$ periodic

## Example: 8-point FFT



Start with 2-point DFTs of samples arranged in bit-reversed order and combine the results in each stage! Note that the butterflies can be further simplfied with $W_{N}^{k+N / 2}=-W_{N}^{k}$

## Computational complexity of Radix-2 FFT

- $v=\log _{2} N$ stages
- per stage, there are $\mathrm{N} / 2$ butterflies
- per butterly, 1 complex multiplication and 2 complex additions

Total: $\log _{2} N \cdot N / 2$ complex multiplications and $\log _{2} N \cdot N$ complex additions, i.e. $O\left(N \log _{2} N\right)$.



