Fast Fourier Transform (FFT)

Borbala Hunyadi

Delft University of Technology, The Netherlands

3
TUDelft

Recap: Discrete Fourier Transform

Definition
The Discrete Fourier Transform (DFT) of a sequence x[n] is
N-1 = i
X[k]= " x[n]e”*™n, for 0< k< N-1
n=0
Applications:
¢ Filtering

* Spectral analysis

5
TUDelft By

Recap: Discrete Fourier Transform

Definition
The Discrete Fourier Transform (DFT) of a sequence x[n] is
N-1 e
X[k]= " x[n]e”*™n, for 0< k< N-1
n=0
Applications:
* Filtering
® Spectral analysis
Is DFT efficient enough?

z
TUDelft 2/13

Computational complexity of the DFT

Let's define Wy = e72™/N1 Then the DFT can be expressed as:

N-1
X[k]= > x[n]WS" for 0< k< N -1
n=0
Steps of the direct computation algorithm:

Stage 1:
Compute and store the values
W/, = e2™IN = cos(2rI/N) — j - sin(27]/N)
Stage 2:
for k=0:N-1
X[k] < x[0]
forn=1:N-1
| = (kn)N

| X[k] < X[k] +x[n]W},
end

2
TUDelft 3/13

Computational complexity of the DFT
Let's define Wy = e72™/N1 Then the DFT can be expressed as:

N-1
X[k]= > x[n]WS" for 0< k< N -1
n=0
Steps of the direct computation algorithm:

Stage 1:
Compute and store the values N evaluations of sin
W/, = e72™IN = cos(2rI/N) — j - sin(2]/N) ~ 2nd cos functions
Stage 2:
for k=0:N-1
X[k] < x[0]
forn=1:N-1
| = (kn)N

| X[k] < X[k] +x[n]W},
end

2
TUDelft 3/13

Computational complexity of the DFT
Let's define Wy = e72™/N1 Then the DFT can be expressed as:

N-1
X[k]= > x[n]WS" for 0< k< N -1
n=0
Steps of the direct computation algorithm:

Stage 1:
Compute and store the values N evaluations of sin
WI(I = e J2mI/N _ COS(27T//N) —j- an(27T//N) and cos functions
Stage 2:
for k = 0: N-1 N2 complex
X[k] <« X[O] multiplications and
forn=1:N-1 N(N - 1) complex
| = (kn)N additions

| X[k] < X[k] +x[n]W},
end

5
TUDelft 3/13

Computational complexity of the DFT
Let's define Wy = e72™/N1 Then the DFT can be expressed as:

N-1
X[k]= > x[n]WS" for 0< k< N -1
n=0
Steps of the direct computation algorithm:

Stage 1:
Compute and store the values N evaluations of sin
WI(I = e J2mI/N _ COS(27T//N) —j- an(27T//N) and cos functions
Stage 2:
for k = 0: N-1 N2 complex
X[k] <« X[O] multiplications and
forn=1:N-1 N(N - 1) complex
| = (kn)N additions

!
d X[k] - X[k] * X[n] WN + overhead:
en addressing, indexing...

end

5
TUDelft 3/13

Computational complexity of the DFT

Let's define Wy = e72™/N1 Then the DFT can be expressed as:

N-1
X[k]= > x[n]WS" for 0< k< N -1
n=0
Steps of the direct computation algorithm: O(N?) - very costly
Stage 1:
Compute and store the values N evaluations of sin
W/, = e72™IN = cos(2rI/N) — j - sin(2]/N) ~ 2nd cos functions
Stage 2:
for k=0:N-1 N2 complex
X[k] <« X[O] multiplications and
forn=1:N-1 N(N - 1) complex
| = (kn)N additions

!
d X[k] - X[k] * X[n] WN + overhead:
en addressing, indexing...

end

5
TUDelft 3/13

Fast Fourier Transform

e A family of computationally efficient algorithms to compute DFT

* Not a new transform!

Different working principles:

@ Divide and conquer approach

® DFT as convolution: linear filtering approach

2
TUDelft 4/13

Fast Fourier Transform

e A family of computationally efficient algorithms to compute DFT

* Not a new transform!

Different working principles:

@ Divide and conquer approach

® DFT as convolution: linear filtering approach

2
TUDelft 4/13

Divide and conquer FFT

Essential ingredients:

3
TUDelft

Divide and conquer FFT

Essential ingredients:

® Break down the N-point DFT to a cascade of smaller-size DFTs

5
TUDelft 5/13

Divide and conquer FFT

Essential ingredients:

® Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: | am thinking of a random number between 1 and
16. Can you guess which number is it?

2
TUDelft 5/13

Divide and conquer FFT

Essential ingredients:

® Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: | am thinking of a random number between 1 and
16. Can you guess which number is it?

® Exploit symmetries

2
TUDelft 5/13

Divide and conquer FFT

Essential ingredients:

® Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: | am thinking of a random number between 1 and
16. Can you guess which number is it?

® Exploit symmetries
W = Wt

Lk k
Wy" = WN/L

2
TUDelft 5/13

Radix-2 FFT

Radix-2 FFT is the most important divide and conquer type FFT
algorithm. It can be used if N =2". This can always be achieved using

zero-padding the sequence.

Decimation in time (DIT) solution:
* Divide the N long sequence x[n] to 2 N/2 long sequences
* The N-point DFT of x[n] can be computed by properly combining
the 2 N/2-point DFTs
® Repeat the subdivision until the sequences are 2 samples long
(2-point DFT)

5
TUDelft 6/ 13

Radix-2 FFT
N-point DFT (N =2") solved by a cascade of r stages:

*(0) 2-point
u4) DFT

Combine
2-point

e X(1)

: DFI"
o = —
6} Combine [¢ x(3)

4-point X(4)

———e X(0)

| e
+(5) gompine T oxe
-point
x3) 2-point DFT's xn

) DFT

Figure 8.1.5 Three stages in the computation of an N = 8-point DFT.

The following slides show the exact operations performed during these
stages.

Delft 7/13

2-point DFT: How to compute in a simple way?

N-1
X[k]= > x[n]WR" for 0< k<N -1
n=0
Let us write out the expression for both DFT coefficients:

2
TUDelft 8/ 13

2-point DFT: How to compute in a simple way?

N-1
X[k]= > x[n]WR" for 0< k<N -1
n=0
Let us write out the expression for both DFT coefficients:

2
TUDelft 8/ 13

2-point DFT: How to compute in a simple way?

N-1
X[k]= > x[n]WR" for 0< k<N -1
n=0
Let us write out the expression for both DFT coefficients:

The 2-point DFT coefficients are given by taking the sum and the
difference of the samples. This simple operation is represented by the
so-called butterfly diagram.

2
TUDelft 8/ 13

Combine two 2-point DFTs into a 4-point DFT

3
X[K] =3 x[n]W;", for 0< k<3
n=0

X[k] = x[0] + x[1] WK + x[2] W2k + x[3] W2k

3
TUDelft 9/13

Combine two 2-point DFTs into a 4-point DFT

3
X[K] =3 x[n]W;", for 0< k<3
n=0

X[k] = x[0] + x[1] WK + x[2] W2k + x[3] W2k

= (x[0] + x[2]WG) + (x[1]W, + x[3]W5")

Decimation in time: divide the
sum to a sum of even and a
sum of odd samples

2
TUDelft 9/13

Combine two 2-point DFTs into a 4-point DFT

X[k] = i x[n]Wf", for 0< k<3
n=0
X[k] = x[0] + x[1] WK + x[2] W2k + x[3] W2k
= (x[0] + x[2]WZF) + (x[1] Wy + x[3] W)

= (x[0] + x[2]WZ) + Wy (x[1] + x[3] V")

2
TUDelft 9/13

Combine two 2-point DFTs into a 4-point DFT

X[k] = i x[n]Wf", for 0< k<3
n=0
X[k] = x[0] + x[1] WK + x[2] W2k + x[3] W2k
= (x[0] + x[2IWZX) + (x[1IW + x[3]W5")
= (x[0] + x[2]WX) + Wy (x[1] + x[3]W;")

= (x[0] + x[2]Wy) + Wy (x[1] + x[3] W)

using the property
Wy = Wy, N =4 and
L=2

2
TUDelft 9/13

Combine two 2-point DFTs into a 4-point DFT

X[k] = i x[n]Wf", for 0< k<3
n=0
X[k] = x[0] + x[1] WK + x[2] W2k + x[3] W2k
= (x[0] + x[2IWZX) + (x[1IW + x[3]W5")
= (x[0] + x[2]WX) + Wy (x[1] + x[3]W;")

= (x[0] + x[2]W5") + Wy (x[1] + x[3]W5) = G[k] + Wy HIK]

H[k] = x[1] + x[3] Wy is the

G[k] = x[0] + x[2] Wy is the
2-point DFT of odd samples

2-point DFT of even samples

5
TUDelft 9/13

4-point DFT from 2-point DFTs

<2
TUDelft LA

4-point DFT from 2-point DFTs

G[k] and H[k] are 2-point
DFTs, hence, 2-periodic

z
TUDelft 10 / 13

4-point DFT from 2-point DFTs

5
TUDelft LA

General case: N-point DFT from N/2-point DFTs

N-1

X[k] = Z_(; x[n]wy”

3 /
TUDelft LIyALS

General case: N-point DFT from N/2-point DFTs

N-1
X[kl = 3 x[n]Wy"
n=0
N/2-1 N/2-1
= 3 x[2r]WE+ W ST x[2r + 1IWRK
r=0 r=0

Decimation in time: divide the
sum to a sum of even and a
sum of odd samples

z
TUDelft 11 /13

General case: N-point DFT from N/2-point DFTs

X[kl = 3 x[n]Wy"

n=0
N/2-1 N/2-1

= 3 x[2r]WE+ W ST x[2r + 1IWRK
r=0 r=0
N/2-1 N/2-1

= > x[2rIWl,+ W > x[2r+ W),
r=0 r=0

using the property
W/\L/K = WI((I/L

z
TUDelft 11 /13

General case: N-point DFT from N/2-point DFTs

N-1

X[K] = 3 x[n]wy"
n=0
N/2-1 N/2-1
= 3 x[2r]WE+ W ST x[2r + 1IWRK
r=0 r=0
NJ2- N/j2-1
Z [2r] W), + Wy EO x[2r + 1JW), = G[k] + WyH[K]
r=0 r=
G[k] is the N/2-point DFT H[k] is the N/2-point DFT
of even samples, hence N/2- of odd samples, hence N/2-
periodic periodic

z
TUDelft 11 /13

Example: 8-point FFT

x[0]

~0-=X[0]
: v
0] m><\ﬁ/\ s
.

2]

> > [

o+X[2]

6] ~></w\“‘ﬁ\\ WV,&..XB]
[

-1 N 3
Al XA A
@ m>l<:\/‘”“’/ ><>Q,;<>-—X[
3] ><Vﬁ>< = \{*c»x[al
———— . 7 \o-»x[ﬂ

Start with 2-point DFTs of samples arranged in bit-reversed order and
combine the results in each stage! Note that the butterflies can be
further simplfied with W™/ = —wk

z
TUDelft 12 /13

Computational complexity of Radix-2 FFT

® v =logyN stages
* per stage, there are N/2 butterflies

e per butterly, 1 complex multiplication and 2 complex additions

Total: logpN - N/2 complex multiplications and logo N - N complex
additions, i.e. O(Nloga V).

«10°

——DFT
——FFT

computational complexity
computational complexity

0 200 400 600 800 1000 0 200 400 600 800 1000
N N

z
TUDelft 13 /13

