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Recap: Discrete Fourier Transform

Definition

The Discrete Fourier Transform (DFT) of a sequence x[n] is

X [k] =
N−1
∑
n=0

x[n]e−j2π
kn
N , for 0 ≤ k ≤ N − 1

Applications:

● Filtering

● Spectral analysis

Is DFT efficient enough?
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Computational complexity of the DFT

Let’s define WN = e−j2π/N ! Then the DFT can be expressed as:

X [k] =
N−1
∑
n=0

x[n]W kn
N , for 0 ≤ k ≤ N − 1

Steps of the direct computation algorithm:

O(N2) - very costly

Stage 1:
Compute and store the values

W l
N = e−j2πl/N = cos(2πl/N) − j ⋅ sin(2πl/N)

Stage 2:
for k = 0 ∶ N − 1

X [k] ← x[0]
for n = 1 ∶ N − 1

l = (kn)N
X [k] ← X [k] + x[n]W l

N

end
end

N evaluations of sin
and cos functions

N2 complex
multiplications and
N(N − 1) complex
additions

+ overhead:
addressing, indexing...
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Fast Fourier Transform

● A family of computationally efficient algorithms to compute DFT

● Not a new transform!

Different working principles:

1 Divide and conquer approach

2 DFT as convolution: linear filtering approach
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Divide and conquer FFT

Essential ingredients:

● Break down the N-point DFT to a cascade of smaller-size DFTs

Guessing game: I am thinking of a random number between 1 and
16. Can you guess which number is it?

● Exploit symmetries

W k
N =W k+N

N

W Lk
N =W k

N/L
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Radix-2 FFT

Radix-2 FFT is the most important divide and conquer type FFT
algorithm. It can be used if N = 2r . This can always be achieved using
zero-padding the sequence.

Decimation in time (DIT) solution:

● Divide the N long sequence x[n] to 2 N/2 long sequences

● The N-point DFT of x[n] can be computed by properly combining
the 2 N/2-point DFTs

● Repeat the subdivision until the sequences are 2 samples long
(2-point DFT)
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Radix-2 FFT
N-point DFT (N = 2r ) solved by a cascade of r stages:

The following slides show the exact operations performed during these
stages.
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2-point DFT: How to compute in a simple way?

X [k] =
N−1
∑
n=0

x[n]W kn
N , for 0 ≤ k ≤ N − 1

Let us write out the expression for both DFT coefficients:

X [0] = x[0] + x[1]W 0
2 = x[0] + x[1]

X [1] = x[0] + x[1]W 1
2 = x[0] − x[1]

The 2-point DFT coefficients are given by taking the sum and the
difference of the samples. This simple operation is represented by the
so-called butterfly diagram.
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Combine two 2-point DFTs into a 4-point DFT

X [k] =
3

∑
n=0

x[n]W kn
4 , for 0 ≤ k ≤ 3

X [k] = x[0] + x[1]W k
4 + x[2]W 2k

4 + x[3]W 3k
4

= (x[0] + x[2]W 2k
4 ) + (x[1]W k

4 + x[3]W 3k
4 )

= (x[0] + x[2]W 2k
4 ) +W k

4 (x[1] + x[3]W 2k
4 )

= (x[0] + x[2]W k
2 ) +W k

4 (x[1] + x[3]W k
2 ) = G [k] +W k

4 H[k]
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Decimation in time: divide the
sum to a sum of even and a
sum of odd samples
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using the property
W LK

N = W k
N/L N = 4 and

L = 2
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4 )

= (x[0] + x[2]W k
2 ) +W k

4 (x[1] + x[3]W k
2 ) = G [k] +W k

4 H[k]

G [k] ≡ x[0] + x[2]W k
2 is the

2-point DFT of even samples
H[k] ≡ x[1] + x[3]W k

2 is the
2-point DFT of odd samples
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4-point DFT from 2-point DFTs

X [k] = G [k] +W k
4 H[k]

X [0] = G [0] +H[0]

X [1] = G [1] +W4H[1]

X [2] = G [2] +W 2
4H[2]

= G [0] +W 2
4H[0]

X [3] = G [3] +W 3
4H[3]

= G [1] +W 3
4H[1]
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G [k] and H[k] are 2-point
DFTs, hence, 2-periodic
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General case: N-point DFT from N/2-point DFTs

X [k] =
N−1
∑
n=0

x[n]W kn
N

=

N/2−1
∑
r=0

x[2r]W 2kr
N +W k

N

N/2−1
∑
r=0

x[2r + 1]W 2kr
N

=

N/2−1
∑
r=0

x[2r]W kr
N/2 +W k

N

N/2−1
∑
r=0

x[2r + 1]W kr
N/2 = G [k] +W k

NH[k]
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G [k] is the N/2-point DFT
of even samples, hence N/2-
periodic

H[k] is the N/2-point DFT
of odd samples, hence N/2-
periodic
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Example: 8-point FFT

Start with 2-point DFTs of samples arranged in bit-reversed order and
combine the results in each stage! Note that the butterflies can be

further simplfied with W
k+N/2
N = −W k

N
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Computational complexity of Radix-2 FFT

● v = log2N stages

● per stage, there are N/2 butterflies

● per butterly, 1 complex multiplication and 2 complex additions

Total: log2N ⋅N/2 complex multiplications and log2N ⋅N complex
additions, i.e. O(Nlog2N).
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