Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Section Signal Processing Systems

Partial exam EE2S31 SIGNAL PROCESSING Part 2: 28 June 2024 (9:00-11:00)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools except a basic pocket calculator permitted. Note the attached tables!

This exam consists of four questions (31 points). Answer in English. Make clear in your answer how you reach the final result; the road to the answer is very important.

Question 1 (8 points)

I sample a cosine wave $x_{a}(t)$ with a sampling frequency F_{s}. I obtain the following digital sequence:

$$
x[k]= \begin{cases}(-1)^{n} & \text { if } k=2 n \\ 0 & \text { otherwise }\end{cases}
$$

That is, the first 8 samples of $x[k]$ are: $\left[\begin{array}{llllllll}1, & 0, & -1, & 0, & 1, & 0, & -1, & 0\end{array}\right]$.
The magnitude spectrum of the signal is shown in the following figure:

Figure 1.

After interpolating $x[k]$ with a factor $L=3$, I obtain the signal $x_{L}[k]$.
(a) Sketch the magnitude spectrum $\left|X_{L}(\omega)\right|$ of the interpolated signal. Make sure you correctly indicate the (normalized) frequencies and the amplitude.

Next, I want to pass the interpolated signal $x_{L}[k]$ through a filter such that it produces a signal that is equivalent to the signal I would obtain by sampling the original analog signal $x_{a}(t)$ with rate $3 F_{s}$. Let us denote the filtered signal by $x_{L H}[k]$.
(b) Give the specification of this filter.

I want to convert back my signal to the analog domain with a digital-to-analog converter. After the conversion, I need to use an analog low-pass filter to reject high frequencies (i.e. above π) of the digital spectrum.
(c) Which solution needs an analog filter with a narrower transition band: converting $x[k]$ or converting $x_{L H}[k]$?
(d) Write down the first 12 samples of the interpolated signal $x_{L}[k]$.
(e) Using the decimation-in-frequency method, compute the 12-point FFT of $x_{L}[k]$ from the 6 -point DFTs of its subsequences.
Hint: As a reminder, the equations for the decimation-in-frequency algorithm are:

$$
\begin{aligned}
g_{1}[n] & =x[n]+x\left[n+\frac{N}{2}\right] \\
g_{2}[n] & =\left(x[n]-x\left[n+\frac{N}{2}\right]\right) \cdot W_{N}^{n}, \quad \text { for } n=0,1, \cdots, \frac{N}{2}-1 \\
X(2 k) & =\sum_{n=0}^{(N / 2)-1} g_{1}[n] W_{N / 2}^{k n} \\
X(2 k+1) & =\sum_{n=0}^{(N / 2)-1} g_{2}[n] W_{N / 2}^{k n}
\end{aligned}
$$

(f) Using the decimation-in-time algorithm depicted in Figure 2 below, compute the 8-point FFT of $x[k]$.
Hint: As verification, you could compare your answer in (e) and (f) with the spectra in Figure 1 and (a).

Figure 2. Decimation-in-time FFT

Question 2 (8 points)

Let us consider an analog signal that is stationary with zero mean and with a range between -2 and 2 mV . During analog-to-digital conversion, it is quantized with a uniform quantizer to 3 bits plus a sign bit.
(a) Compute the average power of the quantization noise. (Model the quantization noise as in the book, i.e. stationary white noise uncorrelated with the signal.)
(b) How can I increase the SQNR of the quantization process, while keeping the number of bits the same? Name at least 2 different strategies. (No need for lengthy explanation, just 2 keywords.)

Let us now consider the following digital system with 2 first-order filter sections, where the outputs of the multipliers are quantized in the same way as $x[n]$:

(c) Calculate the impulse response of the system.
(d) How much is the variance of the quantization noise at the output of the system, considering the errors introduced at the multipliers?

Question 3 (6 points)

Let M_{n} be a sequence of independent random numbers ("bits"), where $M_{n} \in\{0,1\}$ with equal probabilities. Further let $p(t)$ be a pulse,

$$
p(t)= \begin{cases}1, & -0.5 \leq t \leq 0.5 \\ 0, & \text { otherwise }\end{cases}
$$

and for $T=1$ consider the random process

$$
X(t)=\sum_{n=-\infty}^{\infty} M_{n} p(t-n T)
$$

(a) Draw three different realizations of $X(t)$.
(b) What type of random process is $X(t)$? [Think of continuous value/discrete value; continuoustime/discrete time.]
(c) Compute the probability mass function (PMF) $P_{X(t)}(x)$. Is this a complete description of the random process?
(d) Compute $\mathrm{E}[X(t)]$.
(e) Compute the autocorrelation function $R_{X}(t, \tau)$ for $t=0$, i.e. compute $R_{X}(0, \tau)$.
(f) Is M_{n} a stationary random process? Is $X(t)$ stationary? Is it WSS?

Question 4 (9 points)

For this question you might want to make use of Table 3, included at the end of this exam.

Consider a WSS iid random process $X[n]$ with mean $\mu_{X}=2$ and variance $\sigma_{X}^{2}=3$. We filter $X[n]$ with an FIR filter $h[n]$; the output sequence $Y[n]$ is given by

$$
Y[n]=X[n]-2 X[n-1]
$$

(a) Determine the autocorrelation sequence $R_{X}[k]$ of the input.
(b) Compute μ_{Y}, the mean of the output random process.
(c) Compute the crosscorrelation sequence $R_{X Y}[k]$.
(d) Compute the autocorrelation sequence $R_{Y}[k]$ of the output.
(e) Compute the power spectral density $S_{X}(\phi)$ of the input.
(f) Compute the power spectral density $S_{Y}(\phi)$ of the output.
(g) Compute the average power of the output.

Next, $Y[n]$ is filtered by a first-order AR filter with transfer function

$$
G(z)=\frac{1}{1-a z^{-1}}, \quad|a|<1
$$

resulting in the output $W[n]$.
If we take $a=2$, then we recover $X[n]$, however, this filter is not stable. Therefore, we compromise and will try to recover a signal that only has the same autocorrelation as $X[n]$.
(h) Determine a stable filter such that the resulting autocorrelation sequence matches that of $X[n]$ up to a constant c, i.e., $R_{W}[k]=c R_{X}[k]$.

TABLE 4.5 Properties of the Fourier Transform for Discrete-Time Signals

Property	Time Domain	Frequency Domain
Notation	$x(n)$	$X(\omega)$
	$x_{1}(n)$	$X_{1}(\omega)$
-	$x_{2}(n)$	$X_{2}(\omega)$
Linearity	$a_{1} x_{1}(n)+a_{2} x_{2}(n)$	$a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)$
Time shifting	$x(n-k)$	$e^{-j \omega k} X(\omega)$
Time reversal	$x(-n)$	$X(-\omega)$
Convolution	$x_{1}(n) * x_{2}(n)$	$X_{1}(\omega) X_{2}(\omega)$
Correlation	$r_{x_{1} x_{2}}(l)=x_{1}(l) * x_{2}(-l)$	$S_{x_{1} x_{2}}(\omega)=X_{1}(\omega) X_{2}(-\omega)$
		$=X_{1}(\omega) X_{2}^{*}(\omega)$

[if $x_{2}(n)$ is real]
Wiener-Khintchine theorem
$r_{x x}(l)$
$e^{j \omega_{0} n} x(n)$
$x(n) \cos \omega_{0} n$
$x_{1}(n) x_{2}(n)$
$S_{x x}(\omega)$
$X\left(\omega-\omega_{0}\right)$
$\frac{1}{2} X\left(\omega+\omega_{0}\right)+\frac{1}{2} X\left(\omega-\omega_{0}\right)$
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X_{1}(\lambda) X_{2}(\omega-\lambda) d \lambda$

Differentiation in
the frequency domain
$n x(n)$
$j \frac{d X(\omega)}{d \omega}$
$x^{*}(n)$
$X^{*}(-\omega)$
Conjugation $\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}^{*}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X_{1}(\omega) X_{2}^{*}(\omega) d \omega$

Statistical Signal Processing: From Appendix A
\qquad

For $0 \leq p \leq 1$,

$$
\begin{aligned}
P_{X}(x) & =\left\{\begin{array}{ll}
1-p & x=0 \\
p & x=1 \\
0 & \text { otherwise }
\end{array} \quad \phi_{X}(s)=1-p+p e^{s}\right. \\
\mathrm{E}[X] & =p \\
\operatorname{Var}[X] & =p(1-p)
\end{aligned}
$$

\qquad
Binomial (n, p)

For a positive integer n and $0 \leq p \leq 1$,

$$
\begin{aligned}
P_{X}(x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \quad \phi_{X}(s)=\left(1-p+p e^{s}\right)^{n} \\
\mathrm{E}[X] & =n p \\
\operatorname{Var}[X] & =n p(1-p)
\end{aligned}
$$

Discrete Time function	Discrete Time Fourier Transform
$\delta[n]=\delta_{n}$	1
1	$\delta(\phi)$
$\delta\left[n-n_{0}\right]=\delta_{n-n_{0}}$	$e^{-j 2 \pi \phi n_{0}}$
$u[n]$	$\frac{1}{1-e^{-j 2 \pi \phi}}+\frac{1}{2} \sum_{k=-\infty}^{\infty} \delta(\phi+k)$
$e^{j 2 \pi \phi_{0} n}$	$\sum_{k=-\infty}^{\infty} \delta\left(\phi-\phi_{0}-k\right)$
$\cos 2 \pi \phi_{0} n$	$\frac{1}{2} \delta\left(\phi-\phi_{0}\right)+\frac{1}{2} \delta\left(\phi+\phi_{0}\right)$
$\sin 2 \pi \phi_{0} n$	$\frac{1}{2 j} \delta\left(\phi-\phi_{0}\right)-\frac{1}{2 j} \delta\left(\phi+\phi_{0}\right)$
$a^{n} u[n]$	$\frac{1}{1-a e^{-j 2 \pi \phi}} 1-a^{2}$
$a^{\|n\|}$	$\frac{1+a^{2}-2 a \cos 2 \pi \phi}{}$
$g_{n-n_{0}}$	$G(\phi) e^{-j 2 \pi \phi n_{0}}$
$g_{n} e^{j 2 \pi \phi_{0} n}$	$G\left(\phi-\phi_{0}\right)$
g_{-n}	$G^{*}(\phi)$
$\sum_{k=-\infty}^{\infty} h_{k} g_{n-k}$	$G(\phi) H(\phi)$
$g_{n} h_{n}$	$\int_{-1 / 2}^{1 / 2} H\left(\phi^{\prime}\right) G\left(\phi-\phi^{\prime}\right) d \phi^{\prime}$

Note that $\delta[n]$ is the discrete impulse, $u[n]$ is the discrete unit step, and a is a constant with magnitude $|a|<1$.

Table 3 Discrete-Time Fourier transform pairs and properties.

