Partial exam EE2S31 SIGNAL PROCESSING Part 1: 17 May 2022 (13:30-15:30)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of four questions (34 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.
Hint: Avoid losing too much time on detailed calculations, write down the general approach first.

Question 1 (11 points)

Suppose I catch a cold. X is the time until I infect someone else. As part of that interval, let Y be the incubation period. We model this as follows:

Random variable X has a second-order Erlang PDF:

$$
f_{X}(x)= \begin{cases}\lambda^{2} x e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(with $\lambda>0$). Given $X=x, Y$ is a $\operatorname{Uniform}(0, x)$ random variable.
(a) What is $f_{Y \mid X}(y \mid x)$.
(b) What is $f_{X, Y}(x, y)$.
(c) What is $f_{Y}(y)$.
(d) Derive that

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\lambda e^{-\lambda(x-y)} & x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

(e) Compute $\mathrm{E}[X], \mathrm{E}[Y]$ and $\operatorname{cov}[X, Y]$.
(f) Find $\hat{x}_{\text {MMSE }}(y)$, the MMSE estimate of X given $Y=y$.
(g) Find $\hat{x}_{\mathrm{ML}}(y)$, the Maximum Likelihood estimate of X given $Y=y$.
(h) Use the Chebyshev inequality to find an upper bound for $\mathrm{P}[X \geq 4 / \lambda]$.
(i) Find the PDF of $W=X-Y$.

From Appendix A \qquad
Exponential (λ)

For $\lambda>0$,

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{ll}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \quad \phi_{X}(s)=\frac{\lambda}{\lambda-s}\right. \\
\mathrm{E}[X] & =1 / \lambda \\
\operatorname{Var}[X] & =1 / \lambda^{2}
\end{aligned}
$$

> Erlang (n, ג)

For $\lambda>0$, and a positive integer n,

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{ll}
\frac{\lambda^{n} x^{n-1} e^{-\lambda x}}{(n-1)!} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \phi_{X}(s)=\left(\frac{\lambda}{\lambda-s}\right)^{n}\right. \\
\mathrm{E}[X] & =n / \lambda \\
\operatorname{Var}[X] & =n / \lambda^{2}
\end{aligned}
$$

Solution

(a) 1 pnt $f_{Y \mid X}(y \mid x)$ is the uniform distribution:

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} & 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

(b) 1 pnt

$$
f_{X, Y}(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)= \begin{cases}\lambda^{2} e^{-\lambda x} & 0 \leq y \leq x, x \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

(c) 1 pnt

$$
f_{Y}(y)=\int f_{X, Y}(x, y) \mathrm{d} x=\int_{y}^{\infty} \lambda^{2} e^{-\lambda x} \mathrm{~d} x= \begin{cases}\lambda e^{-\lambda y} & y \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

which is an exponential distribution.
(d) 1 pnt

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}\lambda e^{-\lambda(x-y)} & x \geq y \\ 0 & \text { otherwise } .\end{cases}
$$

which is a shifted exponential distribution.
(e) 2 pnt From the mean of the Erlang distribution resp. the exponential distribution,

$$
\begin{aligned}
& \mathrm{E}[X]=\frac{2}{\lambda}, \quad \mathrm{E}[Y]=\frac{1}{\lambda} \\
& \mathrm{E}[X Y]=\int_{0}^{\infty} \int_{0}^{x} x y \lambda^{2} e^{-\lambda x} \mathrm{~d} y \mathrm{~d} x \\
&=\int_{0}^{\infty} \lambda^{2} x e^{-\lambda x}\left[\frac{1}{2} y^{2}\right]_{0}^{x} \mathrm{~d} x \\
&=\int_{0}^{\infty} \frac{1}{2} \lambda^{2} x^{3} e^{-\lambda x} \mathrm{~d} x \\
&=\frac{3}{\lambda^{2}}
\end{aligned}
$$

The final step follows from the expression of the mean of an Erlang distribution with $n=3$.

$$
\operatorname{cov}[X, Y]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]=\frac{3}{\lambda^{2}}-\frac{2}{\lambda} \frac{1}{\lambda}=\frac{1}{\lambda^{2}}
$$

(f) 1 pnt Using properties of the exponential distribution,

$$
\begin{aligned}
\hat{x}_{\mathrm{MMSE}}(y)=\mathrm{E}[X \mid Y=y] & =\int_{y}^{\infty} \lambda x e^{-\lambda(y-x)} \mathrm{d} x \\
& =\int_{0}^{\infty} \lambda(y+u) e^{-\lambda u} \mathrm{~d} u \\
& =y \int_{0}^{\infty} \lambda e^{-\lambda u} \mathrm{~d} u+\int_{0}^{\infty} u \lambda e^{-\lambda u} \mathrm{~d} u \\
& =y+\frac{1}{\lambda}
\end{aligned}
$$

(g) 1 pnt The ML is found by optimizing the likelihood function, which is $f_{Y \mid X}(y \mid x)$ viewed as function of x (and for a given observation y):

$$
\hat{x}_{\mathrm{ML}}(y)=\underset{x}{\arg \max } f_{Y \mid X}(y \mid x)=\underset{x, x \geq y}{\arg \max } \frac{1}{x}=y
$$

since the maximum is achieved for $x=y$.
(h) 1 pnt

$$
\mathrm{P}\left[X \geq \frac{4}{\lambda}\right]=\mathrm{P}\left[X-\frac{2}{\lambda} \geq \frac{2}{\lambda}\right]=\mathrm{P}\left[\left|X-\frac{2}{\lambda}\right| \geq \frac{2}{\lambda}\right] \leq \frac{\operatorname{var}[X]}{c^{2}}
$$

with $c=\frac{2}{\lambda}$ and, for an Erlang distribution with $n=2, \operatorname{var}[X]=\frac{2}{\lambda^{2}}$, so that

$$
\mathrm{P}\left[X \geq \frac{4}{\lambda}\right] \leq \frac{1}{2}
$$

(i) 2 pnt Note $y=x-w$, with $y \geq 0 \Rightarrow x \geq w$ and $y \leq x \Rightarrow w \geq 0$. Hence

$$
f_{W}(w)=\int f_{X, Y}(x, x-w) \mathrm{d} x=\int_{w}^{\infty} \lambda^{2} e^{-\lambda x} \mathrm{~d} x=\lambda e^{-\lambda w}
$$

for $w \geq 0$, and 0 otherwise. This is an exponential distribution. (Use of the MGF is tricky here, since it is used for the sum of independent random variables.)

Alternative derivation:

$$
f_{W}(w)=\int f_{X, Y}(w+y, y) \mathrm{d} y=\int_{0}^{\infty} \lambda^{2} e^{-\lambda(w+y)} \mathrm{d} y
$$

which evaluates to the same result.
W denotes the time from when I am infectious, until I infect someone. We know that Erlang(2) is the sum of two independent exponential RVs (here: $X=Y+W$), so this checks out.

Question 2 (7 points)

A Laplace distribution with scale parameter $a>0$ has moment generating function (MGF)

$$
\phi_{Z}(s)=\frac{a^{2}}{a^{2}-s^{2}}, \quad \operatorname{ROC}:|s|<a
$$

(a) Compute $\mathrm{E}[Z]$ and $\operatorname{var}[Z]$ using the MGF.

For $\lambda>0$, let

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

be the PDF of an exponentially distributed random variable X.
(b) Derive that the moment generating function (MGF) $\phi_{X}(s)$ is

$$
\phi_{X}(s)=\frac{\lambda}{\lambda-s}, \quad \text { ROC: } s<\lambda
$$

(c) Let $Y=-X$. Derive the MGF of Y.
(d) Derive how we can generate a random variable Z with a Laplace (a) distribution using two independent exponentially distributed random variables X and Y; also specify the parameter λ.

Solution

(a) 2 pnt

$$
\begin{aligned}
\frac{\mathrm{d} \phi_{Z}(s)}{\mathrm{d} s} & =\frac{2 a^{2} s}{\left(a^{2}-s^{2}\right)^{2}} \\
\frac{\mathrm{~d}^{2} \phi_{Z}(s)}{\mathrm{d} s^{2}} & =\frac{-4 a^{2} s}{\left(a^{2}-s^{2}\right)^{3}}+\frac{2 a^{2}}{\left(a^{2}-s^{2}\right)^{2}} \\
\mathrm{E}[Z] & =\left.\frac{\mathrm{d} \phi_{Z}(s)}{\mathrm{d} s}\right|_{s=0}=0 \\
\mathrm{E}\left[Z^{2}\right] & =\left.\frac{\mathrm{d}^{2} \phi_{Z}(s)}{\mathrm{d} s^{2}}\right|_{s=0}=\frac{2 a^{2}}{a^{4}}=\frac{2}{a^{2}} \\
\operatorname{var}[Z] & =\mathrm{E}\left[Z^{2}\right]-(\mathrm{E}[Z])^{2}=\frac{2}{a^{2}}
\end{aligned}
$$

(b) 2 pnt From the definition,

$$
\begin{aligned}
\phi_{X}(s)=\mathrm{E}\left[e^{s X}\right] & =\int_{0}^{\infty} e^{s x} \lambda e^{-\lambda x} \mathrm{~d} x \\
& =\int_{0}^{\infty} \lambda e^{(s-\lambda) x} \mathrm{~d} x \\
& =\frac{\lambda}{s-\lambda}\left[e^{(s-\lambda) x}\right]_{0}^{\infty} \\
& =\frac{\lambda}{\lambda-s}
\end{aligned}
$$

with (from the 2 nd equation) ROC: $s<\lambda$.
(c) 1 pnt From the scaling properties (Thm. 9.5),

$$
\phi_{Y}(s)=\phi_{X}(-s)=\frac{\lambda}{\lambda+s}
$$

with ROC: $-s<\lambda \Leftrightarrow s>-\lambda$.
Alternative derivation:

$$
f_{Y}(y)= \begin{cases}\lambda e^{\lambda y} & y \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\phi_{Y}(s) & =\int_{-\infty}^{0} \lambda e^{\lambda y} e^{s y} \mathrm{~d} y \\
& =\left[\frac{\lambda}{\lambda+s} e^{(\lambda+s) y}\right]_{-\infty}^{0} \\
& =\frac{\lambda}{\lambda+s}
\end{aligned}
$$

with (from the 2nd equation) ROC: $s>-\lambda$.
(d) 2 pnt This is found by inspection. Consider $Z=X-Y$, for independent X and Y, both exponentially distributed, then the MGF of Z is

$$
\phi_{Z}(s)=\phi_{X}(s) \cdot \phi_{Y}(-s)=\frac{\lambda}{\lambda-s} \frac{\lambda}{\lambda+s}=\frac{\lambda^{2}}{\lambda-s^{2}}
$$

Thus, Z is Laplace distributed, with $a=\lambda$.
The ROC of the MGF of X is $s<\lambda$, the ROC of the MGF of $-Y$ is $s>-\lambda$, so the ROC of the product is (intersection) $|s|<\lambda$, which matches with the ROC of the MGF of the Laplace.
We have shown that a variable with a Laplace distribution can be generated from the difference of two exponentially distributed RVs.

Question 3 (8 points)

A Barlett window of length $2 N-1$ is defined as

$$
b_{2 N-1}[n]= \begin{cases}\frac{N-|n|}{N} & 0 \leq|n| \leq N \\ 0 & \text { otherwise }\end{cases}
$$

The Barlett window (up to a scaling) can be created by convolving the rectangular window

$$
w_{N}[n]= \begin{cases}1 & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

with its time-reversed version $w_{N}[-n]$.
(1 p) (a) Give the exact expression (including scaling) for the $2 N-1$ long Bartlett window in terms of $w_{N}[n]$.
($\mathbf{2} \mathbf{p}$) (b) Verify that the Bartlett window can be expressed in the frequency domain as

$$
B_{2 N-1}(\omega)=\frac{1}{N}\left(\frac{\sin (\omega N / 2)}{\sin (\omega / 2)}\right)^{2} .
$$

Hint: recall that the DTFT of $w_{N}[n]$ is $W_{N}(\omega)=\frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \cdot e^{-j \omega(N-1) / 2}$.
($\mathbf{2} \mathbf{p}$) (c) Compare the DTFT magnitude of the length N rectangular window and $2 N-1$ Bartlett window using a sketch! Which of the above windows result in less spectral leakage and why?
(1 p) (d) In case we can collect exactly M samples of a given signal, which window can achieve better spectral resolution, a length M Bartlett or length M rectangular window?
(2 p) (e) What is the 4-point DFT of the sequence

$$
x[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

observed through the Bartlett $b_{2 N-1}$ for $N=4$?

Solution

See figure 1 for the time-domain representation of the Bartlett window.
(a)

$$
b_{2 N-1}[m]=\frac{1}{N} \sum_{n=0}^{N-1} w[n] w[m-(-n)], \quad m=-(N-1) \cdots, N-1
$$

The scalar $\frac{1}{N}$ is needed to obtain $b_{2 N-1}[0]=1$ instead of $b_{2 N-1}[0]=N$ which is the result of the convolution without scaling.

Figure 1
(b) Convolution in the time domain is multiplication in the DTFT domain, therefore (using the time-reversal property of the Fourier Transform):

$$
\begin{aligned}
B_{2 N-1}[\omega] & =\mathcal{F}\left\{b_{2 N-1}[n]\right\}=\frac{1}{N} \mathcal{F}\{w[n]\} \cdot \mathcal{F}\{w[-n]\}= \\
& =\frac{1}{N} W_{N}(\omega) \cdot W_{N}(-\omega)=\frac{1}{N} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \cdot e^{-j \omega(N-1) / 2} \cdot \frac{\sin (-\omega N / 2)}{\sin (-\omega / 2)} \cdot e^{j \omega(N-1) / 2}= \\
& =\frac{1}{N}\left(\frac{\sin (\omega N / 2)}{\sin (\omega / 2)}\right)^{2}
\end{aligned}
$$

(c) See Figure 2.

Figure 2

The Barlett window has less specral leakage due to the smaller sidelobes.
(d) Spectral resolution depends on the width of the main lobe. The main lobe of the $2 N-1$ Barlett window is the same as that of the $N-1$ rectangular window. However, for the same length, $2 N-1$, the rectangular window would have a narrower main lobe. So, the rectangular window will achieve a better resolution.
(e) The observed sequence $y[n]=[1,0.75,0.5,0.25,0]$. Its 4-point DFT is computed as

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0.75 \\
0.5 \\
0.25
\end{array}\right]=\left[\begin{array}{c}
2.5 \\
0.5-0.5 j \\
0.5 \\
0.5+0.5 j
\end{array}\right]
$$

Question 4 (8 points)

Our antenna receives two radio signals at the same time, $X_{a}^{(1)}(F)$ and $X_{a}^{(2)}(F)$, where $X_{a}^{(1)}(F) \neq$ 0 for $40<|F|<50$ and $X_{a}^{(2)}(F) \neq 0$ for $50<|F|<60$.
Our radio receiver first samples the signal $X_{a}(F)=X_{a}^{(1)}(F)+X_{a}^{(2)}(F)$ and then applies filters to separate the two radio signals from each other.
($\mathbf{2} \mathbf{p}$) (a) Sketch the spectrum (in the interval -60 to 60 Hz) of the digital signal $X(F)$ in case we choose a sampling rate $F_{s}=40 \mathrm{~Hz}$.
(1 p) (b) Define the ideal digital low-pass filter that extracts the baseband copy of $X^{(1)}$ from $X^{(F)}$ (i.e., the spectral copy of $X^{(1)}(F)$ which is closest to 0 Hz). Let us call this baseband copy $X_{B}^{(1)}(F)$.
$(\mathbf{2} \mathbf{p})$ (c) We will use zero-order hold interpolation to construct the analog version of $X_{B}^{(1)}$. The impulse response of the zero-order interpolation filter is given by

$$
h_{0}(t)=u(t)-u(t-T)= \begin{cases}1, & 0 \leq t \leq T \\ 0, & \text { otherwise }\end{cases}
$$

Prove that the frequency response of this interpolation filter in the frequency domain is

$$
H_{0}(\Omega)=e^{-j \Omega T / 2} T \frac{\sin (\Omega T / 2)}{\Omega T / 2}
$$

(2 p) (d) Sketch the magnitude impulse reponse $\left|H_{0}(\Omega)\right|$ along with the magnitude impulse response of the ideal interpolation filter and compare. Can $H_{0}(\Omega)$ give you a perfect reconstruction of $x_{B}^{(1)}$? If not, at which frequencies will you observe distortion?
($\mathbf{1} \mathbf{p}$) (e) Define a digital filter, to be applied prior to interpolation, which compensates for the zero-order-hold interpolation!

Solution

(a) See Figure 3.
(b) $L(F)=1$ for $0 \leq|F| \leq 10$ and 0 otherwise. See also Figure 4 .

Figure 3

Figure 4
(c)

$$
\begin{aligned}
H_{0}(\Omega) & =\int_{-\infty}^{\infty}(u(t)-u(t-T)) e^{-j \Omega t} d t= \\
& =\int_{0}^{T} e^{-j \Omega t} d t=-\left.\frac{1}{j \Omega} e^{-j \Omega t}\right|_{0} ^{T}=\frac{e^{-j \Omega T}-e^{0}}{-j \Omega}=\frac{e^{-j \Omega T / 2}\left(e^{j \Omega T / 2}-e^{-j \Omega T / 2}\right)}{j \Omega}= \\
& =e^{-j \Omega T / 2} \frac{2 j \sin (\Omega T / 2)}{j \Omega}=e^{-j \Omega T / 2} T \frac{\sin (\Omega T / 2)}{\Omega T / 2}
\end{aligned}
$$

(d) See Figure 5. The ideal interpolation filter $\left|H_{i}(\Omega)\right|$ is in blue, while $\left|H_{0}(\Omega)\right|$ is in green. The reconstruction of $X_{B}^{(1)}$ will have attenuated frequencies up to 10 Hz . Above 10 Hz the signal has 0 frequency content due to filtering in part b).
(e) See Figure 5. The compenation filter $H_{c}(\Omega)$ is in red.

$$
H_{c}(\Omega)= \begin{cases}\frac{1}{H_{0}(\Omega)} & \text { for } \Omega>\Omega_{s} / 2=20 \mathrm{~Hz} \\ 0 & \text { otherwise }\end{cases}
$$

Figure 5

