Partial exam EE2S31 SIGNAL PROCESSING Part 1: 17 May 2022 (13:30-15:30)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of four questions (35 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.
Hint: Avoid losing too much time on detailed calculations, write down the general approach first.

Question 1 (11 points)

Suppose I catch a cold. X is the time until I infect someone else. As part of that interval, let Y be the incubation period. We model this as follows:

Random variable X has a second-order Erlang PDF:

$$
f_{X}(x)= \begin{cases}\lambda^{2} x e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(with $\lambda>0$). Given $X=x, Y$ is a $\operatorname{Uniform}(0, x)$ random variable.
(a) What is $f_{Y \mid X}(y \mid x)$.
(b) What is $f_{X, Y}(x, y)$.
(c) What is $f_{Y}(y)$.
(d) Derive that

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\lambda e^{-\lambda(x-y)} & x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

(e) Compute $\mathrm{E}[X], \mathrm{E}[Y]$ and $\operatorname{cov}[X, Y]$.
(f) Find $\hat{x}_{\text {MMSE }}(y)$, the MMSE estimate of X given $Y=y$.
(g) Find $\hat{x}_{\mathrm{ML}}(y)$, the Maximum Likelihood estimate of X given $Y=y$.
(h) Use the Chebyshev inequality to find an upper bound for $\mathrm{P}[X \geq 4 / \lambda]$.
(i) Find the PDF of $W=X-Y$.

From Appendix A \qquad
Exponential (λ)

For $\lambda>0$,

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{ll}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \quad \phi_{X}(s)=\frac{\lambda}{\lambda-s}\right. \\
\mathrm{E}[X] & =1 / \lambda \\
\operatorname{Var}[X] & =1 / \lambda^{2}
\end{aligned}
$$

> \ldots Erlang (\boldsymbol{n}, λ)

For $\lambda>0$, and a positive integer n,

$$
\begin{aligned}
f_{X}(x) & =\left\{\begin{array}{ll}
\frac{\lambda^{n} x^{n-1} e^{-\lambda x}}{(n-1)!} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \phi_{X}(s)=\left(\frac{\lambda}{\lambda-s}\right)^{n}\right. \\
\mathrm{E}[X] & =n / \lambda \\
\operatorname{Var}[X] & =n / \lambda^{2}
\end{aligned}
$$

Question 2 (7 points)

A Laplace distribution with scale parameter $a>0$ has moment generating function (MGF)

$$
\phi_{Z}(s)=\frac{a^{2}}{a^{2}-s^{2}}, \quad \operatorname{ROC}:|s|<a
$$

(a) Compute $\mathrm{E}[Z]$ and $\operatorname{var}[Z]$ using the MGF.

For $\lambda>0$, let

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

be the PDF of an exponentially distributed random variable X.
(b) Derive that the moment generating function (MGF) $\phi_{X}(s)$ is

$$
\phi_{X}(s)=\frac{\lambda}{\lambda-s}, \quad \text { ROC: } s<\lambda
$$

(c) Let $Y=-X$. Derive the MGF of Y.
(d) Derive how we can generate a random variable Z with a Laplace (a) distribution using two independent exponentially distributed random variables X and Y; also specify the parameter λ.

A Barlett window of length $2 N-1$ is defined as

$$
b_{2 N-1}[n]= \begin{cases}\frac{N-|n|}{N} & 0 \leq|n| \leq N \\ 0 & \text { otherwise }\end{cases}
$$

The Barlett window (up to a scaling) can be created by convolving the rectangular window

$$
w_{N}[n]= \begin{cases}1 & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}
$$

with its time-reversed version $w_{N}[-n]$.
(1 p) (a) Give the exact expression (including scaling) for the $2 N-1$ long Bartlett window in terms of $w_{N}[n]$.
($\mathbf{2} \mathbf{p}$) (b) Verify that the Bartlett window can be expressed in the frequency domain as

$$
B_{2 N-1}(\omega)=\frac{1}{N}\left(\frac{\sin (\omega N / 2)}{\sin (\omega / 2)}\right)^{2}
$$

Hint: recall that the DTFT of $w_{N}[n]$ is $W_{N}(\omega)=\frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \cdot e^{-j \omega(N-1) / 2}$.
($\mathbf{2} \mathbf{p}$) (c) Compare the DTFT magnitude of the length N rectangular window and $2 N-1$ Bartlett window using a sketch! Which of the above windows result in less spectral leakage and why?
(1 p) (d) In case we can collect exactly M samples of a given signal, which window can achieve better spectral resolution, a length M Bartlett or length M rectangular window?
($2 \mathbf{p}$) (e) What is the 4 -point DFT of the sequence

$$
x[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

observed through the Bartlett $b_{2 N-1}$ for $N=4$?

Question 4 (8 points)

Our antenna receives two radio signals at the same time, $X_{a}^{(1)}(F)$ and $X_{a}^{(2)}(F)$, where $X_{a}^{(1)}(F) \neq$ 0 for $40<|F|<50$ and $X_{a}^{(2)}(F) \neq 0$ for $50<|F|<60$.
Our radio receiver first samples the signal $X_{a}(F)=X_{a}^{(1)}(F)+X_{a}^{(2)}(F)$ and then applies filters to separate the two radio signals from each other.
$(\mathbf{2 ~ p})$ (a) Sketch the spectrum (in the interval -60 to 60 Hz) of the digital signal $X(F)$ in case we choose a sampling rate $F_{s}=40 \mathrm{~Hz}$.
(1 p) (b) Define the ideal digital low-pass filter that extracts the baseband copy of $X^{(1)}$ from $X^{(F)}$ (i.e., the spectral copy of $X^{(1)}(F)$ which is closest to 0 Hz). Let us call this baseband copy $X_{B}^{(1)}(F)$.
$(\mathbf{2} \mathbf{p})$ (c) We will use zero-order hold interpolation to construct the analog version of $X_{B}^{(1)}$. The impulse response of the zero-order interpolation filter is given by

$$
h_{0}(t)=u(t)-u(t-T)= \begin{cases}1, & 0 \leq t \leq T \\ 0, & \text { otherwise }\end{cases}
$$

Prove that the frequency response of this interpolation filter in the frequency domain is

$$
H_{0}(\Omega)=e^{-j \Omega T / 2} T \frac{\sin (\Omega T / 2)}{\Omega T / 2} .
$$

(2 p) (d) Sketch the magnitude impulse reponse $\left|H_{0}(\Omega)\right|$ along with the magnitude impulse response of the ideal interpolation filter and compare. Can $H_{0}(\Omega)$ give you a perfect reconstruction of $x_{B}^{(1)}$? If not, at which frequencies will you observe distortion?
(1 p) (e) Define a digital filter, to be applied prior to interpolation, which compensates for the zero-order-hold interpolation!

TABLE 4.5 Properties of the Fourier Transform for Discrete-Time Signals

Property	Time Domain	Frequency Domain
Notation	$x(n)$	$X(\omega)$
	$x_{1}(n)$	$X_{1}(\omega)$
	$x_{2}(n)$	$X_{2}(\omega)$
Linearity	$a_{1} x_{1}(n)+a_{2} x_{2}(n)$	$a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)$
Time shifting	$x(n-k)$	$e^{-j \omega k} X(\omega)$
Time reversal	$x(-n)$	$X(-\omega)$
Convolution	$x_{1}(n) * x_{2}(n)$	$X_{1}(\omega) X_{2}(\omega)$
Correlation	$r_{x_{1} x_{2}}(l)=x_{1}(l) * x_{2}(-l)$	$S_{x_{1} x_{2}}(\omega)=X_{1}(\omega) X_{2}(-\omega)$
		$\left[i f x_{2}(n)\right.$ is real]
Wiener-Khintchine theorem	$r_{x x}(l)$	$S_{x x}(\omega)$
Frequency shifting	$e^{j \omega_{0} n} x(n)$	$X\left(\omega-\omega_{0}\right)$
Modulation	$x(n) \cos \omega_{0} n$	$\frac{1}{2} X\left(\omega+\omega_{0}\right)+\frac{1}{2} X\left(\omega-\omega_{0}\right)$
Multiplication	$x_{1}(n) x_{2}(n)$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X_{1}(\lambda) X_{2}(\omega-\lambda) d \lambda$
Differentiation in		$j \frac{d X(\omega)}{d \omega}$
the frequency domain	$n x(n)$	$X^{*}(-\omega)$
Conjugation	$x^{*}(n)$	$\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}^{*}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X_{1}(\omega) X_{2}^{*}(\omega) d \omega$
Parseval's theorem		

