
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING
Part 2: 24 June 2022 (13:30-15:30)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools

except a basic pocket calculator permitted.

This exam consists of four questions (34 points). Answer in Dutch or English. Make clear

in your answer how you reach the final result; the road to the answer is very important.

Write your name and student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (8 points)

An analog signal xa(t) is a linear combination of 4 sinusoids with frequency components at 300

Hz, 400 Hz, 1.3 kHz and 4.2 kHz, as indicated in Figure 1. As depicted in Figure 2A, the signal

is sampled at 2 kHz. The sampled signal is converted back to analog again using an ideal D/A

converter (DAC), followed by a low-pass filter with cut-off frequency at 900 Hz. The result is

ya(t).

Figure 1.

Figure 2.

2 p (a) Draw the spectrum of x[n] and ya(t). Where applicable, indicate both physical and

normalized frequencies! What are the frequency components in the output signal?

2 p (b) Now we introduce upsampling, as shown in Figure 2B. Draw the spectum of v[n] and

ya(t). What are the frequency components of the output now?

2 p (c) Now we introduce downsampling instead of upsampling, as shown in Figure 2C. Draw

the spectum of w[n] and ya(t). What are the frequency components of the output now?
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2 p (d) Modify the system (C) in order to avoid aliasing. You are allowed to use an A/D

converter with an arbitrary sampling rate and a digital filter. No other components in

system (C) can be changed.

Solution

The resulting spectra are depicted in the Figure below.

(a) The resulting spectum is periodic at 2000 Hz and symmetric around 0. Between 0 and π

(0-1000 Hz) we have:

• 300 and 400 Hz

• 1300 + k · 2000 Hz will be aliased onto 700 Hz

• 4200 + k · 2000 Hz will be aliased onto 200 Hz.

(b) The spectrum of v[n] is identical with that of x[n] in physical frequencies, but the link

between physical and normalized frequencies changes (2π now corresponds to 4000 Hz).
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After the DAC and LPF we get the same output spectrum as before in part A.

(c) Compared to X(F ), the spectrum is streched with a factor of 2, i.e. frequencies that

were filling the fundamental period [0, π] are now stretched over [0, 2π]. Note that 2π

now corresponds to 1000 Hz, i.e. the spectrum is now periodic with a period of 1000 Hz.

Therefore, we have the following frequency components between [0, 2π] (0-1000 Hz):

• 200, 300 and 400 Hz

• 700 + k · 1000 Hz will be also aliased onto 300 Hz

• Due to 2π periodicity and symmetry, we also have −200 + 1000n = 800 Hz, −300 +

1000 = 700 Hz, −400 + 1000 = 600 Hz.

(d) In order to avoid aliasing, we need to sample at at least twice the highest frequency in the

signal, i.e 8.4 kHz. With such an an A/D converter, in our digital signal 2π corresponds

to 8.4 kHz. Before downsampling with a factor of 2, we need to remove all frequencies

above π/2. This means a digital low-pass filter with a cut-off at 4.2 kHz.

Question 2 (9 points)

Given a signal xa(t) with bandwidth B = 120 Hz and unit variance with a range between [−1, 1].

The signal is digitized using an A/D converter using a binary representation with 4 bits plus a

sign bit.

1 p (a) What is the maximum possible value of the quantization error?

1 p (b) Assuming that the error is zero mean and is uniformly distributed, what is the power

of the quantization noise?

2 p (c) The signal to quantization noise ratio is given by SQNR = 10 log10
σ2
x
σ2
e
. Show that

increasing the number of bits in the A/D converter, the SQNR increases with 6 dB per

bit.

2 p (d) Name two other strategies to increase the SQNR!

2 p (e) The figure below shows the frequency response of the noise (He(ω)) and signal transfer

functions (Hs(ω)) of a 1st and 2nd order sigma-delta modulator (SDM). Based on this

figure, explain the concept of noise shaping!

1 p (f) At which sampling rate (roughly) should we sample the signal xa(t) in order to efficiently

suppress noise in the signal band?

Solution

(a) The range is R = 2. There are 24+1 = 25 = 32 possible codewords, therefore, the stepsize

is 2/32 = 1/16. The maximum quantization error is half of this (the possible maximum

distance between signal and the closest quantization level), i.e. 1/32.

(b) The power of the quantization noise is

Pn = σ2
x =

∆2

12
=

1
16

2

12
= 3.25 · 10−4
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Figure 3.

(c)

SQNR = 10 log10

σ2
x

σ2
e

= 10 log10

σ2
x

∆2

12

= 10 log10

σ2
x

( R2

2b+1 )2

12

= 10 log10

12σ2
x

R2
+ 10 log10 22b+2

= 10 log10

12σ2
x

R2
+ b · 2 · 10 log10 2 + const

The second term is equal to b · 6 dB, therefore, increasing b results in an improvement of

6 dB.

(d) We can use differential (or even better: differential predictive) quantization. Another

strategy could be oversampling.

(e) The signal transfer function equals 1 at all frequencies, which means that it does not alter

the signal. The noise transfer function, however, has high-pass characteristics, suppressing

the noise at the lowest frequencies, in other words, shaping the noise such that most of its

power is distributed towards the higher frequencies. This is beneficial in case the signal

has low frequency.

(f) The noise is suppressed (roughly) below 0.3π, therefore, we need to choose a sampling rate

Fs such that B < Fs
2 · 0.3. So, Fs > 2B/(0.3) = 2 · 120/0.3 = 800 Hz.
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Question 3 (8 points)

Consider the random process X(t) = A cos(2πf0t), where A is a random variable with zero mean

and variance σ2, and f0 is a non-random frequency in Hz.

(a) Draw two realizations of X(t).

(b) Determine E[X(t)].

(c) Compute the autocorrelation function RX(t, τ).

(d) Is X(t) a WSS random process? (Motivate)

Now, let A and B be two independent random variables with zero mean and variance σ2, and

consider Z(t) = A cos(2πf0t) +B sin(2πf0t).

(e) Compute the autocorrelation function RZ(t, τ).

(f) Is Z(t) a WSS random process? (Motivate)

Hint: Recall cosα cosβ = 1
2 [cos(α− β) + cos(α+ β)], sinα sinβ = 1

2 [cos(α− β)− cos(α+ β)].

Solution

(a) 1 pnt For example, we could draw (randomly) A = 1 and A = −0.5, resulting in

(b) 1 pnt E[X(t)] = E[A] cos(2πf0t) = 0.

(c) 2 pnt Since E[A] = 0, we have E[A2] = var[A] + (E[A])2 = σ2.

RX(t, τ) = E[X(t)X(t+ τ)]

= E[A2] cos(2πf0t) cos(2πf0(t+ τ))

=
σ2

2
[cos(2πf0τ) + cos(2πf0(2t+ τ))]

(d) 1 pnt Not WSS because the autocorrelation RX(t, τ) depends on t.

(e) 2 pnt Since E[AB] = E[A] E[B] = 0,

RZ(t, τ) = E[(A cos(2πf0t) +B sin(2πf0t))(A cos(2πf0(t+ τ)) +B sin(2πf0(t+ τ)))]

= E[A2] cos(2πf0t) cos(2πf0(t+ τ)) + E[B2] sin(2πf0t) sin(2πf0(t+ τ)) + 0

=
σ2

2
[cos(2πf0τ) + cos(2πf0(2t+ τ)) + cos(2πf0τ)− cos(2πf0(2t+ τ))]

= σ2 cos(2πf0τ) .
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(f) 1 pnt WSS because RZ(t, τ) does not depend on t (and E[Z(t)] = 0 does not depend on t).

Another way to view this result is by recognizing that Z is a sinusoid with a random

amplitude and phase, and the book showed that this is WSS (in contrast to a sinusoid

with a non-random phase).

Question 4 (9 points)

For this question you might want to make use of Table 3, included at the end of this exam.

Consider a WSS random process X[n] with autocorrela-

tion sequence

RX [k] = −1

2
δ[k + 1] + 2δ[k]− 1

2
δ[k − 1]

(a) Compute the power spectral density, SX(φ), and

make a plot of SX(φ) (specify the values on the

axes).

(b) Is this a valid autocorrelation sequence? (Motivate)

X[n] is filtered by a first-order IIR filter with impulse

response

h[n] = anu[n] , |a| < 1

resulting in the output Y [n]. For the moment, take a = 1
2 .

−2 0

RX [k]

k32
1−1

−3

h[n]

a

Y [n]X[n]

z−1

(c) Is Y [n] an AR process? (Motivate)

(d) Find RXY [k], the cross-correlation sequence.

(e) Find SY (φ), the power spectral density of the output.

(f) Find RY [k], the auto-correlation sequence of the output.

(g) Find the average power of the output.

(h) Is it possible to select a such that Y [n] is white? If so, compute a.

Solution

(a) 1.5 pnt

SX(φ) = −1

2
ej2πφ + 2− 1

2
e−j2πφ = 2− cos(2πφ)

6



(b) 1 pnt Yes, it is a valid autocorrelation sequence.

RX [k] satisfies the 3 properties of Thm. 13.12 (RX [0] ≥ 0, symmetric, maximum at RX [0]),

but note that these are necessary, but not sufficient conditions. We also require SX(φ) ≥ 0

(which is clearly satisfied).

A counterexample showing that the 3 conditions on RX [k] are not sufficient: consider

RX [k] = −3
2δ[k + 1] + 2δ[k]− 3

2δ[k − 1]. In this case we don’t have S(φ) ≥ 0.

(c) 1 pnt Not an AR process: although the filter is AR, the input is not white. This is an ARMA

process.

(d) 1 pnt

RXY [k] = h[k] ∗RX [k] = −1

2
ak+1u[k + 1] + 2aku[k]− 1

2
ak−1u[k − 1]

with a = 1
2 . Inserting a, this could be written in various ways, e.g.

RXY [k] = −1

2
δ[k + 1] +

7

4
δ[k] +

3

8

(
1

2

)k−1

u[k − 1]

(e) 1 pnt First compute H(z), from this derive H(φ) (or use Table 3):

H(z) =
1

1− az−1
⇒ H(φ) =

1

1− a e−j2πφ

SY (φ) = H(φ)H∗(φ)SX(φ) =
1

1− a e−j2πφ
1

1− a ej2πφ
(2−cos(2πφ)) =

2− cos(2πφ)

(1 + a2)− 2a cos(2πφ)

with a = 1
2 . This simplifies to

SY (φ) =
2− cos(2πφ)
5
4 − cos(2πφ)

(f) 1.5 pnt Use Table 3:

RY [k] =
2a|k|

1− a2
−

1
2a
|k−1|

1− a2
−

1
2a
|k+1|

1− a2

With a = 1
2 this results in

RY [k] =
8

3

(
1

2

)|k|
− 2

3

(
1

2

)|k−1|
− 2

3

(
1

2

)|k+1|

Alternatively, write

SY (φ) = 1 +
3
4

5
4 − cos(2πφ)

resulting in (using Table 3)

RY [k] = δ[k] +

(
1

2

)|k|
(g) 1 pnt

RY [0] =
2

1− a2
−

1
2a

1− a2
−

1
2a

1− a2
=

2− a
1− a2

= 2

(h) 1 pnt Yes: we need RY [k] to be a delta spike, or SY (φ) to be constant; the latter requires

2a

1 + a2
=

1

2
a2 − 4a+ 1 = 0 ⇒ a = 2±

√
3

For stability reasons, we select a = 2−
√

3 = 0.268.
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