Partial exam EE2S31 SIGNAL PROCESSING Part 2: 24 June 2022 (13:30-15:30)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of four questions (34 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general approach first.

Question 1 (8 points)

An analog signal $x_a(t)$ is a linear combination of 4 sinusoids with frequency components at 300 Hz, 400 Hz, 1.3 kHz and 4.2 kHz, as indicated in Figure 1. As depicted in Figure 2A, the signal is sampled at 2 kHz. The sampled signal is converted back to analog again using an ideal D/A converter (DAC), followed by a low-pass filter with cut-off frequency at 900 Hz. The result is $y_a(t)$.

- **2 p (a)** Draw the spectrum of x[n] and $y_a(t)$. Where applicable, indicate both physical and normalized frequencies! What are the frequency components in the output signal?
- **2 p (b)** Now we introduce upsampling, as shown in Figure 2B. Draw the spectrum of v[n] and $y_a[n]$. What are the frequency components of the output now?

- **2 p** (c) Now we introduce downsampling instead of upsampling, as shown in Figure 2C. Draw the spectrum of w[n] and $y_a[n]$. What are the frequency components of the output now?
- 2 p (d) Modify the system (C) in order to avoid aliasing. You are allowed to use an A/D converter with an arbitrary sampling rate and a digital filter. No other components in system (C) can be changed.

Question 2 (9 points)

Given a signal $x_a(t)$ with bandwidth B = 120 Hz and unit variance with a range between [-1, 1]. The signal is digitized using an A/D converter using a binary representation with 4 bits plus a sign bit.

- **1 p (a)** What is the maximum possible value of the quantization error?
- **1 p (b)** Assuming that the error is zero mean and is uniformly distributed, what is the power of the quantization noise?
- **2 p (c)** The signal to quantization noise ratio is given by SQNR = $10 \log_{10} \frac{\sigma_x^2}{\sigma_e^2}$. Show that increasing the number of bits in the A/D converter, the SQNR reduces with 6dB.
- 2 p (d) Name two other strategies to increase the SQNR!
- **2 p (e)** The figure below shows the frequency response of the noise $(H_e(\omega))$ and signal transfer functions $(H_s(\omega))$ of a 1st and 2nd order sigma-delta modulator (SDM). Based on this figure, explain the concept of noise shaping!

Figure 3

1 p (e) At which sampling rate (roughly) should we sample the signal $x_a(t)$ in order to efficiently suppress noise in the signal band?

Question 3 (8 points)

Consider the random process $X(t) = A \cos(2\pi f_0 t)$, where A is a random variable with zero mean and variance σ^2 , and f_0 is a non-random frequency in Hz.

- (a) Draw two realizations of X(t).
- (b) Determine E[X(t)].
- (c) Compute the autocorrelation function $R_X(t,\tau)$.
- (d) Is X(t) a WSS random process? (Motivate)

Now, let A and B be two independent random variables with zero mean and variance σ^2 , and consider $Z(t) = A\cos(2\pi f_0 t) + B\sin(2\pi f_0 t)$.

- (e) Compute the autocorrelation function $R_Z(t, \tau)$.
- (f) Is Z(t) a WSS random process? (Motivate)

Hint: Recall $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)], \sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)].$

Question 4 (9 points)

For this question you might want to make use of Table 3, included at the end of this exam.

Consider a WSS random process X[n] with autocorrelation sequence

$$R_X[k] = -\frac{1}{2}\delta[k+1] + 2\delta[k] - \frac{1}{2}\delta[k-1]$$

- (a) Compute the power spectral density, $S_X(\phi)$, and make a plot of $S_X(\phi)$ (specify the values on the axes).
- (b) Is this a valid autocorrelation sequence? (Motivate)

X[n] is filtered by a first-order IIR filter with impulse response

$$h[n] = a^n u[n], \qquad |a| < 1$$

resulting in the output Y[n]. For the moment, take $a = \frac{1}{2}$.

- (c) Is Y[n] an AR process? (Motivate)
- (d) Find $R_{XY}[k]$, the cross-correlation sequence.
- (e) Find $S_Y(\phi)$, the power spectral density of the output.
- (f) Find $R_Y[k]$, the auto-correlation sequence of the output.
- (g) Find the average power of the output.
- (h) Is it possible to select a such that Y[n] is white? If so, compute a.

 $R_X[k]$

Discrete Time function	Discrete Time Fourier Transform
$\delta[n] = \delta_n$	1
1	$\delta(\phi)$
$\delta[n-n_0] = \delta_{n-n_0}$	$e^{-j2\pi\phi n_0}$
u[n]	$\frac{1}{1-e^{-j2\pi\phi}} + \frac{1}{2}\sum_{k=-\infty}^{\infty}\delta(\phi+k)$
$e^{j2\pi\phi_0 n}$	$\sum_{k=-\infty}^{\infty} \delta(\phi - \phi_0 - k)$
$\cos 2\pi\phi_0 n$	$\frac{1}{2}\delta(\phi - \phi_0) + \frac{1}{2}\delta(\phi + \phi_0)$
$\sin 2\pi\phi_0 n$	$\frac{1}{2j}\delta(\phi - \phi_0) - \frac{1}{2j}\delta(\phi + \phi_0)$
$a^n u[n]$	$\frac{1}{1 - ae^{-j2\pi\phi}}$
$a^{ n }$	$\frac{1-a^2}{1+a^2-2a\cos 2\pi\phi}$
g _{n-n₀}	$G(\phi)e^{-j2\pi\phi n_0}$
$g_n e^{j2\pi\phi_0 n}$	$G(\phi - \phi_0)$
g_{-n}	$G^*(\phi)$
$\sum_{k=-\infty}^{\infty} h_k g_{n-k}$	$G(\phi)H(\phi)$
$g_n h_n$	$\int_{-1/2}^{1/2} H(\phi') G(\phi - \phi') d\phi'$

Note that $\delta[n]$ is the discrete impulse, u[n] is the discrete unit step, and a is a constant with magnitude |a| < 1.

 $\label{eq:table 3} {\it Table 3} {\it Discrete-Time Fourier transform pairs and properties.}$