Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING Part 2: 24 June 2022 (13:30-15:30)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of four questions (34 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.
Hint: Avoid losing too much time on detailed calculations, write down the general approach first.

Question 1 (8 points)

An analog signal $x_{a}(t)$ is a linear combination of 4 sinusoids with frequency components at 300 $\mathrm{Hz}, 400 \mathrm{~Hz}, 1.3 \mathrm{kHz}$ and 4.2 kHz , as indicated in Figure 1. As depicted in Figure 2A, the signal is sampled at 2 kHz . The sampled signal is converted back to analog again using an ideal D / A converter (DAC), followed by a low-pass filter with cut-off frequency at 900 Hz . The result is $y_{a}(t)$.

Figure 1

Figure 2
$2 \mathbf{p}$ (a) Draw the spectrum of $x[n]$ and $y_{a}(t)$. Where applicable, indicate both physical and normalized frequencies! What are the frequency components in the output signal?
$\mathbf{2 p}$ (b) Now we introduce upsampling, as shown in Figure 2B. Draw the spectum of $v[n]$ and $y_{a}[n]$. What are the frequency components of the output now?
$2 \mathbf{p}$ (c) Now we introduce downsampling instead of upsampling, as shown in Figure 2C. Draw the spectum of $w[n]$ and $y_{a}[n]$. What are the frequency components of the output now?
$\mathbf{2} \mathbf{p}$ (d) Modify the system (C) in order to avoid aliasing. You are allowed to use an A/D converter with an arbitrary sampling rate and a digital filter. No other components in system (C) can be changed.

Question 2 (9 points)

Given a signal $x_{a}(t)$ with bandwidth $B=120 \mathrm{~Hz}$ and unit variance with a range between $[-1,1]$. The signal is digitized using an A / D converter using a binary representation with 4 bits plus a sign bit.
$1 \mathbf{p}$ (a) What is the maximum possible value of the quantization error?
$1 \mathbf{p}$ (b) Assuming that the error is zero mean and is uniformly distributed, what is the power of the quantization noise?
$\mathbf{2} \mathbf{p}$ (c) The signal to quantization noise ratio is given by $\mathrm{SQNR}=10 \log _{10} \frac{\sigma_{x}^{2}}{\sigma_{e}^{2}}$. Show that increasing the number of bits in the A / D converter, the SQNR reduces with 6 dB .
$2 \mathbf{p}(\mathbf{d})$ Name two other strategies to increase the SQNR!
$\mathbf{2 p}$ (e) The figure below shows the frequency response of the noise $\left(H_{e}(\omega)\right)$ and signal transfer functions $\left(H_{s}(\omega)\right)$ of a 1 st and 2 nd order sigma-delta modulator (SDM). Based on this figure, explain the concept of noise shaping!

Figure 3
$1 \mathbf{p}(\mathbf{e})$ At which sampling rate (roughly) should we sample the signal $x_{a}(t)$ in order to efficiently suppress noise in the signal band?

Question 3 (8 points)

Consider the random process $X(t)=A \cos \left(2 \pi f_{0} t\right)$, where A is a random variable with zero mean and variance σ^{2}, and f_{0} is a non-random frequency in Hz .
(a) Draw two realizations of $X(t)$.
(b) Determine $\mathrm{E}[X(t)]$.
(c) Compute the autocorrelation function $R_{X}(t, \tau)$.
(d) Is $X(t)$ a WSS random process? (Motivate)

Now, let A and B be two independent random variables with zero mean and variance σ^{2}, and consider $Z(t)=A \cos \left(2 \pi f_{0} t\right)+B \sin \left(2 \pi f_{0} t\right)$.
(e) Compute the autocorrelation function $R_{Z}(t, \tau)$.
(f) Is $Z(t)$ a WSS random process? (Motivate)

Hint: Recall $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)], \sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$.

Question 4 (9 points)

For this question you might want to make use of Table 3, included at the end of this exam.
Consider a WSS random process $X[n]$ with autocorrelation sequence

$$
R_{X}[k]=-\frac{1}{2} \delta[k+1]+2 \delta[k]-\frac{1}{2} \delta[k-1]
$$

(a) Compute the power spectral density, $S_{X}(\phi)$, and make a plot of $S_{X}(\phi)$ (specify the values on the axes).
(b) Is this a valid autocorrelation sequence? (Motivate)
$X[n]$ is filtered by a first-order IIR filter with impulse response

$$
h[n]=a^{n} u[n], \quad|a|<1
$$

resulting in the output $Y[n]$. For the moment, take $a=\frac{1}{2}$.
(c) Is $Y[n]$ an AR process? (Motivate)
(d) Find $R_{X Y}[k]$, the cross-correlation sequence.
(e) Find $S_{Y}(\phi)$, the power spectral density of the output.
(f) Find $R_{Y}[k]$, the auto-correlation sequence of the output.
(g) Find the average power of the output.
(h) Is it possible to select a such that $Y[n]$ is white? If so, compute a.

Discrete Time function	Discrete Time Fourier Transform
$\delta[n]=\delta_{n}$	1
1	$\frac{\delta(\phi)}{}$
$\delta\left[n-n_{0}\right]=\delta_{n-n_{0}}$	$e^{-j 2 \pi \phi n_{0}}$
$u[n]$	$\frac{1}{1-e^{-j 2 \pi \phi}}+\frac{1}{2} \sum_{k=-\infty}^{\infty} \delta(\phi+k)$
$e^{j 2 \pi \phi_{0} n}$	$\sum_{k=-\infty}^{\infty} \delta\left(\phi-\phi_{0}-k\right)$
$\cos 2 \pi \phi_{0} n$	$\frac{1}{2} \delta\left(\phi-\phi_{0}\right)+\frac{1}{2} \delta\left(\phi+\phi_{0}\right)$
$\sin 2 \pi \phi_{0} n$	$\frac{1}{2 j} \delta\left(\phi-\phi_{0}\right)-\frac{1}{2 j} \delta\left(\phi+\phi_{0}\right)$
$a^{n} u[n]$	$\frac{1}{1-a e^{-j 2 \pi \phi}} 1-a^{2}$
$a^{\|n\|}$	$\frac{1+a^{2}-2 a \cos 2 \pi \phi}{}$
$g_{n-n_{0}}^{g_{n} e^{j 2 \pi \phi_{0} n}}$	$G(\phi) e^{-j 2 \pi \phi n_{0}}$
g_{-n}^{∞}	$G\left(\phi-\phi_{0}\right)$
$\sum_{k=-\infty}^{\infty} h_{k} g_{n-k}$	$G^{*}(\phi)$
$g_{n} h_{n}$	$G(\phi) H(\phi)$

Note that $\delta[n]$ is the discrete impulse, $u[n]$ is the discrete unit step, and a is a constant with magnitude $|a|<1$.

Table 3 Discrete-Time Fourier transform pairs and properties.

