
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING

Part 1: May 28, 2021

Block 1: Stochastic Processes (13:30-14:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25–14:40

This block consists of three questions (25 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (9 points)

Random variables X and Y have joint PDF

fX,Y (x, y) =

{
c xy for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the constant c.

(b) Find fX(x) and fY (y).

(c) Are X and Y independent?

(d) Determine P[X + Y ≤ 1].

(e) Determine E[X|X + Y ≤ 1].

Solution

(a) 2 pnt ∫ ∞
x=−∞

∫ ∞
y=−∞

fX,Y (x, y) dy dx =

∫ 1

x=0

∫ 1

y=0
c xy dy dx

= c

∫ 1

0

[
1

2
xy2
]1
y=0

dx

=
c

2

∫ 1

0
x dx

=
c

4
= 1

Hence c = 4.

(b) 2 pnt For 0 ≤ x ≤ 1,

fX(x) =

∫ x

y=0
c xy dy = c x

[
1

2
y2
]1
0

= 2x

1
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The complete PDF is

fX(x) =

{
2x for 0 ≤ x ≤ 1,

0 otherwise.

Based on symmetry, fY (y) = fX(y), hence

fY (y) =

{
2y for 0 ≤ y ≤ 1,

0 otherwise.

(c) 1 pnt Clearly fX,Y (x, y) = fX(x)fY (y) so X and Y are independent.

(d) 1.5 pnt

P[X + Y ≤ 1] =

∫∫
x+y≤1

fX,Y (x, y) dxdy

=

∫ 1

0

∫ 1−x

0
4xy dydx

=

∫ 1

0
2x(1− x)2 dx

= 2

(
1

2
− 2

3
+

1

4

)
=

1

6

Alternatively (but less insightful): define W = X + Y , then

fW (w) =

∫ w

0
fX,W−Xdx =

∫ w

0
4x(w − x)dx = 4

[
1

2
wx2 − 1

3
x3
]w
0

=
2

3
w3 , (0 ≤ w ≤ 2)

P[X + Y ≤ 1] =

∫ 1

0
fW (w)dw =

∫ 1

0

2

3
w3dw =

2

3

1

4
=

1

6

(e) 2.5 pnt The conditional PDF is

fX,Y |X+Y≤1(x, y) =
fX,Y (x, y)

P[X + Y ≤ 1]

on the domain of the constraint, and 0 otherwise:

fX,Y |X+Y≤1(x, y) =

{
24xy for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x
0 otherwise.

Then (cf. Thm. 7.7)

E[X|X + Y ≤ 1] =

∫∫
x fX,Y |X+Y≤1(x, y) dxdy

= 24

∫ 1

0

∫ 1−x

0
x2y dydx

= 12

∫ 1

0
x2(1− x)2 dx

= 12

(
1

3
− 2

4
+

1

5

)
=

2

5

2



Alternatively: compute

fX|X+Y≤1(x) =

∫ 1−x

0
24xydy = 12x(1− x)2 = 12(x− 2x2 + x3) (0 ≤ x ≤ 1)

E[X|X + Y ≤ 1] =

∫
x fX|X+Y≤1(x)dx = 12

∫ 1

0
(x2 − 2x3 + x4)dx = 12(

1

3
− 2

4
+

1

5
) =

2

5

Question 2 (7 points)

It is known that if X is standard normal distributed, X ∼ Gaussian(0, 1), then Y = X2 is

Chi-square distributed with 1 degree of freedom.

Further, it is known that if Y has a Chi-square distribution with n degrees of freedom, the

moment generating function (MGF) is given by

φY (s) =
1

(1− 2s)n/2
, ROC: s <

1

2

(a) Show that if Xi ∼ Gaussian(0, 1) (all independent), then Y =
n∑
1

X2
i has a Chi-squared

distribution with n degrees of freedom.

(b) Use the MGF to prove that

E[Y ] = n, var[Y ] = 2n .

Suppose now we have n iid random variables Xi ∼ Gaussian(0, σ), and we try to estimate the

variance σ2 using

Sn =
1

n

n∑
i=1

X2
i

(c) What is E[Sn] and var[Sn]?

Is the estimate Sn unbiased? Is it consistent?

(d) Use the central limit theorem to estimate how many samples n are at least needed such

that

P[ |Sn − σ2| > 0.1σ2] < 0.01

Note: You will need to use table 4.1/4.2 on p. 129/130.

Solution

(a) 1 pnt For n = 1, we have Y1 = X2
1 and know that

φY1(s) =
1

(1− 2s)1/2

Then for the sum of n iid random variables of this form, Thm. 9.6 gives that

φY (s) = [φY1(s)]n =
1

(1− 2s)n/2

which is the MGF of a Chi-square distribution with n degrees of freedom.
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(b) 2 pnt Using the MGF,

E[Y ] =
dφY (s)

ds

∣∣∣∣
s=0

=
n/2 · 2

(1− 2s)n/2+1

∣∣∣∣
s=0

= n

E[Y 2] =
d

ds

dφY (s)

ds

∣∣∣∣
s=0

=
d

ds

n

(1− 2s)n/2+1

∣∣∣∣
s=0

=
n(n/2 + 1) · 2
(1− 2s)n/2+2

∣∣∣∣
s=0

= n(n+ 2)

var[Y ] = E[Y 2]− (E[Y ])2 = n(n+ 2)− n2 = 2n

(c) 2 pnt In comparison to Y we had before, we have Sn = σ2

n Y . Thus, the mean value scales with

σ2/n and the variance with σ4/n2:

E[Sn] = σ2 , var[Sn] =
2σ4

n

The estimate is unbiased (expected value equal to the true value), and consistent (variance

goes to zero for n→∞ so that the estimate converges to the true value).

(d) 2 pnt The mean value of Sn is σ2 and its standard deviation is std =
√
2√
n
σ2. To use the CLT, we

need to normalize Sn as

Zn =
Sn − σ2

std

So

P[ |Sn − σ2| < 0.1σ2] = P

[
−0.1

σ2

std
< Zn < 0.1

σ2

std

]
= P

[
−0.1

√
n√
2
< Zn < 0.1

√
n√
2

]
< 0.99

P

[
Zn < 0.1

√
n√
2

]
< 0.995

Φ

(
0.1

√
n√
2

)
> 0.995

0.1

√
n√
2

> 2.58 (using table)

n > (2.58)2 2/(0.1)2 = 1331

Question 3 (9 points)

In a BPSK communication system, a source wishes to communicate a random bit X to a receiver.

The possible bits X = 1 and X = −1 are equally likely. In this system, the source transmits X

multiple times. In the ith transmission, the receiver observes Yi = X+Ni. After n transmissions

of X, the receiver has observed Y = y = [y1, · · · , yn]T .

Assume the noise Ni are iid Gaussian(0,1) random variables, independent of X.

Let X̂ML(y) be the maximum likelihood (ML) estimate of X based on the observation Y = y.

(a) Show that

fY |X(y|x) = c e−
1
2

∑n
i=1(yi−x)2 ,

where c is some constant.
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(b) What is X̂ML(y) ?

(c) Is knowledge that X ∈ {1,−1} used by the ML estimator? Does the noise variance play a

role?

(d) Compute eML, the mean square error of the ML estimate.

Let X̂L(y) = aTy + b be the linear minimum mean square error (LMMSE) estimate of X.

(e) Find the LMMSE estimate X̂L(y).

(f) What is eL, the mean square error of the optimum linear estimate.

Hint: for (e), you may want to exploit Woodbury’s Identity,

(I + uuT )−1 = I − uuT

1 + uTu

Solution

(a) 1 pnt If X = x is known, then Yi = x + Ni, hence the PDF of Yi is the PDF of Ni, with the

mean shifted by x. Using the iid property, it follows for N samples that

fY |X(y|x) =
n∏
i=1

fYi|X(yi|x)

=
n∏
i=1

fNi(yi − x)

=

n∏
i=1

1√
2π

e−(yi−x)
2/2

=

(
1√
2π

)n
e−

1
2

∑n
i=1(yi−x)2 .

(b) 2 pnt The maximum likelihood estimator is obtained for the maximum of the conditional PDF,

seen as function of X: it is

x̂ = arg max
x

fY |X(y|x) = arg min
x

n∑
i=1

(yi − x)2

To obtain the minimum, set the derivative to zero:

d

dx

n∑
i=1

(yi − x)2 = −2
n∑
i=1

yi +
n∑
i=1

2x = 0

Hence

x̂ =
1

n

n∑
i=1

yi

(c) 1 pnt The prior information on X is by definition not used by the ML, as is also clear from the

above derivation. The noise variance σ2n also doesn’t play a role in the resulting estimator:

it is independent of the value of σ2n.
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(d) 1.5 pnt The MSE of the ML estimator is

eML = E[(X̂ −X)2] = E[(
1

n

∑
Yi −X)2] =

1

n2

∑
E[N2

i ] =
1

n
.

(e) 2 pnt Note that X is a scalar, and Y is a vector. For the LMMSE estimator, we will need

µX ,µY ,CXY ,CY .

µX = 0, µY = 0

CX Yi = E[XYi] = E[X(X +Ni)] = E[X2] = 1

⇒ CXY = [1, · · · , 1] = 1T

CYiYj = E[YiYj ] = E[(X +Ni)(X +Nj)] = E[X2] + E[NiNj ] = 1 + δij

⇒ CY = I + 11T

Using Woodbury’s identity, and 1T1 = n,

C−1Y = I − 11T

1 + 1T1
= I − 1

n+ 1
11T .

aT = CXYC
−1
Y = 1T (I − 1

n+ 1
11T ) = 1T − n

n+ 1
1T =

1

n+ 1
1T

The LMMSE estimator is

X̂L(y) = aTy + b =
1

n+ 1
1Ty + 0 =

1

n+ 1

n∑
i=1

yi

(f) 1.5 pnt The MSE of this estimator is

eL = E[(X̂ − L−X)2]

= E

[(
(

1

n+ 1

∑
Yi)−X

)2
]

= E

[(
1

n+ 1
(
∑

Yi −X)− 1

n+ 1
X

)2
]

=
1

(n+ 1)2
E

[(
(
∑

Ni)−X
)2]

=
1

(n+ 1)2

(∑
E[N2

i ] + E[X2]
)

=
1

(n+ 1)2
(n+ 1)

=
1

n+ 1
.

This is lower than the MSE of the ML estimator, but the estimator is slightly biased: if

X = 1, then E[X̂|X = 1] = n
n+1 < 1.
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Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING

Part 1: May 28th 2021
Block 2: Digital Signal Processing (14:50-15:50)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:45-16:00.

This block consists of three questions (25 points), more than usual. This will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. No points will be

awarded for results without a derivation. Write your name and student number on each

sheet.

Question 4 (11 points)

Let us consider the bicycle wheel on Figure 1. We are taking a video of this wheel at a rate of

24 frames per second. Let us assume that we keep the position of the wheel within the video

frame steady.

Figure 1

(2 p) (a) What is the maximum angular speed of the wheel that the camera can capture

truthfully?

(2 p) (b) At what speed will it appear on the video as if the wheel is standing still? Explain

in your own words what is the reason why the wheel appears to stand still!

(2 p ) (c) What would happen if we removed the red reflector light? How does your answer to

(a) and (b) change?

(3 p) (d) Let’s consider now that the wheel is moving at a constant speed and we are capturing

the video for infinitely long. The series of values captured by a certain pixel are [1 0 1 0 1

0 ...]. What is the 8-point DFT of this series?

(2 p) (e) In practice, we cannot continue taking the video forever. Let’s consider now that we

are capturing only 7 frames. Is the 8-point DFT of this series the same as the 8-point DFT

of the above infinite series? Why? What about the 8-point DFT of the first 6 frames?
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Solution

(a) With 24 frames per second, our sampling rate is Fs = 24Hz. The rotation of the wheel

gives rise to a periodic signal, with a period equal to the time it takes for the red light to

turn around and get back to its original position. At 24Hz the maximum frequency we can

capture is Fmax = Fs
2 = 12 Hz [1 p]. This means that the wheel can rotate with a maximum

of 12Hz, therefore, with a maximum angular speed of ω = 2π ·Fmax = 2π · 12 = 75.4 rad/s

[1 p].

(b) It will appear as if the wheel stands still when the red light arrives back to the same position

by the time the next frame is captured, i.e. when the angular speed is the same as the

framerate or its integer multiple [1 p], i.e. K ·24Hz . Therefore, fstill = K ·2π·24 = K ·150.8

rad/s [1 p].

(c) If we remove the red light, the wheel is rotationally symmetric: it appears to be the same

after only 1
8 of a full rotation. Therefore, it can move 8 times slower than before to appear

the same [1 p]. The maximum speed we can capture is Fmax
8 and it will appear to stand

still at Fstill
8 [1 p].

(d) The 8-point DFT is computed, by definition, using:

X[k] =
N−1∑
n=0

x[n]e−j2π
kn
N , k = 0, ..., N − 1

X[0] =
7∑

n=0

x[n]e0 =
N−1∑
k=0

x[n] = 4 [1 p]

X[1] =

7∑
n=0

x[n]e−j2π
n
8 = 1 · e−j2π

0
8 + 1 · e−j2π

2
8 + 1 · e−j2π

4
8 1 · e−j2π

6
8

=

3∑
m=0

(e−j2π
2
8 )m =

1− (e−j2π
2
8
))4

1− e−j2π
2
8

=
1− 1

1− e−j2π
2
8

= 0

In general [1 p]:

X[k] =

7∑
n=0

x[n]e−j2π
nk
8 = 1 · e−j2π

0k
8 + 1 · e−j2π

2k
8 + 1 · e−j2π

4k
8 1 · e−j2π

6k
8

If |e−j2π
2k
8 | 6= 1, then, similarly as for X[1], the sum of geometric series is 0.

If e−j2π
2k
8 = 1, then the above sum is equal to 4. This equation holds for k=0 and k=4.

Therefore, the 8-point DFT is [4 0 0 0 4 0 0 0]. [1 p]

(e) The 6 and 7 long series, respectively, are:

x1 = [1010101]

x2 = [101010]

We have to zero-pad these short sequences in order to take their 8-point DFT. After zero-

padding, they become

x
(z)
1 = [10101010]

x
(z)
2 = [10101000]

The periodic extension of x
(z)
1 is the same as the original infinite series, so its DFT is the

same as in (d) [1 p]. This is not true for x
(z)
2 , the corresponding DFT is different [1 p].
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Question 5 (7 points)

Given a real analog signal with a spectrum shown in Figure 2a. We want to sample the signal

with 20Hz. We know that the signal contains noise above 5Hz.

(a) (b)

Figure 2

(2 p) (a) Design (sketch) the cheapest possible (non-ideal) antialiasing filter with a linear tran-

sition band that preserves the noiseless part of signal.

(2 p) (b) Sketch the spectum of the signal after filtering and sampling! Make sure to correctly

indicate the magnitude and frequency values as well as the labels of the axes (pay attention

to correct sketching in part (a) too )!

(1 p) (c) Let’s assume that after further digital processing, the spectrum of our digital signal

is as depicted on Figure 2b. Let’s represent this spectrum using an 8-point DFT. What

are the values of the DFT coefficients Y [k]?

(1 p) (d) Let’s further filter the signal with a system with frequency response H[k] = [1 0.9

0.8 0.7 0.6 0.7 0.8 0.9]. What is the DFT of the resulting signal?

(1 p) (e) After filtering using the system H[k] and taking the inverse DFT of the filtered

signal, we notice that the first values of the sequence are non-zeros, despite the fact that

the original sequence (that corresponds to the spectrum in Figure 2b) are zeros. How do

you explain this?

Solution

(a) Figure 3 below depicts the antialiasing filter [2 p].

(b) Figure 4 depicts the spectrum of the signal after filtering and sampling. Notice that

frequencies between 5-10Hz are attenuated due to filtering compared to the original spec-

trum [1 p for periodic spectral image, 1 p for correct frequencies and magnitudes, 1 p for

indicating the attenuation between 5-10Hz ] .
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Figure 3

Figure 4

(c) DFT takes equidistant samples from the requency interval [−π π]. For real signals, the

spectrum is symmetric, and X[k] = X[N-k] for an N-point DFT. X[0] is the sample at

0 frequency. For X[1], ...X[4] we need to take 4 samples between 0 to π (inclusive π).

Therefore, based on Figure 2b: X[0] = 5, X[1] = 6, X[2] = 4, X[3] = 5, X[4] = 0, X[5] =

X[8-5] = 5, X[6] = 4, X[7] = 6 [1 p].

(d) In frequency domain, we can multiply the DFTs of the signal and the filter to obtain the

filtered signal. Therefore, the resulting signal is[
5 · 1 6 · 0.9 4 · 0.8 5 · 0.7 0 · 0.6 5 · 0.74 · 0.8 6 · 0.9

]
[1 p].

(e) Non-zero values appear due to the circular convolution property: the origin of these values

is the last couple of samples of the original sequence [1 p].
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Question 6 (7 points)

(1 p) (a) We are sampling a slowly varying signal with Fs = 1.05Hz sampling rate. How long

do we need to sample in order to obtain N = 21 sample values?

(1 p) (b) We would like to analyse the spectrum of the acquired sequence. What will be the

limit of the frequency resolution?

(3 p) (c) We want to compute the DFT of our sequence using FFT. Give 2 alternative FFT-

based algorithms that we could use. Outline the major steps of each algorithm!

(2 p) (d) Which option has lower computational complexity? I.e. how many multiplications

do we need to perform for each of the two algorithms?

Solution

(a) We need to sample for T = n
Fs

= 21
1.05Hz = 20s long (i.e. the observation interval) [1 p].

(b) The frequency resolution is limited by the sampling interval and the number of samples,

or, in other words, the duration of finite observation interval T. We cannot distinguish 2

frequencies which are closer to each other than 1
NTs

= 1
T = 1

20 = 0.05Hz [1 p].

(c) Two alternatives:

• radix-2 FFT [0.5 p]

• Divide and conquer appraoch for N = LM long sequences, here N = 21 and L = 3,

M = 7.[0.5 p]

Radix-2 FFT [1 p]:

• zero-pad the sequence till Nz = 32

• sort the samples of the sequence in bit-reversed order

• apply radix-2 FFT using 5 stages

Divide and conquer appraoch for N = LM long sequences [1 p]:

• organize the samples into a 3-by-7 matrix, filling the matrix, for example, column-wise

• compute 3-point DFTs of each row, resulting in a 3-by-7 matrix again

• multiply each element of the matrix with an appropriate phase factor

• compute 7-point DFTs of each column

• read out the DFT coefficients row-wise.

(d) For the radix-2 algorihtm, each 2-point DFT (butterfly) requires one (complex) multipli-

cation. Each stage requires 32/2=16 butterflies and we have 5 stages. Therefore, we need

80 (complex) multipliations [1 p].

For the other algorithm: each N-point DFT take N2 (complex) multiplications. First, we

need 7 3-point DFTs. Then, we need N multiplications with the phase factors. Finally,

we need 3 7-point DFTs. That is, 7 · 32 + 21 + 3 ∗ 72 = 231. [1 p].
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