
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING

Part 2: July 1, 2021

Block 1: Stochastic Processes (13:30-14:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25–14:40

This block consists of three questions (25 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (7 points)

Let X(t) = A cos(Ω0t) be a random process, where A ∈ {−1,+1} with equal probabilities, and

Ω0 is a given frequency.

(a) Draw two different realizations of X(t).

(b) What type of random process isX(t)? [Think of continuous value/discrete value; continuous-

time/discrete time.]

(c) Compute the probability mass function (PMF) PX(t)(x).

(d) Compute E[X(t)].

(e) Compute RX(t, τ).

(f) Is X(t) stationary? Is it WSS?

Solution

(a) 1 pnt (There are only 2 possibilities, one for A = 1, the other for A = −1)

(b) 1 pnt This is a discrete value continuous-time random process. (Therefore, X(t) is described by

a PMF.)

(c) 1 pnt

PX(t)(x) =


1
2 x = cos(Ω0t)
1
2 x = − cos(Ω0t)

0 otherwise

(d) 1 pnt E[X(t)] = E[A] cos(Ω0t) = 0.

(e) 2 pnt Note that E[A2] = 1. Then

RX(t, τ) = E[A cos(Ω0t)A cos(Ω0(t+τ))] = E[A2] cos(Ω0t) cos(Ω0(t+τ)) =
1

2
cos(Ω0τ)+

1

2
cos(2Ω0t+Ω0τ)

(f) 1 pnt Not stationary because PX(t)(x) 6= PX(t+τ)(x).

Not WSS because RX(t, τ) depends on t .
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Question 2 (9 points)

Let Xn be an independent identically distributed (iid) random sequence with mean 2 and vari-

ance 3, and consider Yn = 1
2(Xn +Xn−1).

(a) Compute E[Yn].

(b) Compute var[Yn].

(c) Compute RX [k].

(d) Compute RXY [n, k] and RY [n, k].

(e) Compute the average power of Yn.

(f) Is Yn iid? Is it WSS? Is it jointly WSS with Xn?

(g) If Xn is Gaussian, is Yn Gaussian?

Solution

(a) 1 pnt Use independence of Xn and Xn−1: E[Yn] = 1
2(E[Xn] + E[Xn−1) = 2.

(b) 1 pnt Use independence of Xn and Xn−1: var[Yn] = 1
4(var(Xn) + var(Xn−1)) = 3

2 .

(c) 1 pnt The extended derivation is, using iid,

RX [k] = E[XnXn+k] =

{
E[X2

n] k = 0

E[Xn]E[Xn+k] k 6= 0
=

{
µ2X + var[Xn] k = 0

µ2X k 6= 0
=

{
4 + 3 k = 0

4 k 6= 0

Write this in one expression as RX [k] = 4 + 3δ[k].

(d) 3 pnt

RXY [n, k] = E[XnYn+k]

=
1

2
E[Xn(Xn+k +Xn+k−1)]

=
1

2
(RX [k] +RX [k − 1])

= 4 +
3

2
δ[k] +

3

2
δ[k − 1]

RY [n, k] = E[YnYn+k]

=
1

4
E[(Xn +Xn−1)(Xn+k +Xn+k−1)]

=
1

4
(E[XnXn+k] + E[XnXn+k−1] + E[Xn−1Xn+k] + E[Xn−1Xn+k−1])

=
1

4
(2RX [k] +RX [k − 1] +RX [k + 1])

= 4 +
3

2
δ[k] +

3

4
δ[k − 1] +

3

4
δ[k + 1]

Alternatively, use the convolution equations.

(e) 1 pnt E[Y 2
n ] = RY [0] = 4 + 3

2 = 5.5
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(f) 1.5 pnt Not iid because Yn is not independent of Yn−1 (they both depend on Xn−1). This is also

seen from RY [k] or, more clearly, from the auto-covariance sequence CY [k] = RY [k]−µ2Y =
3
2δ[k] + 3

4δ[k − 1] + 3
4δ[k + 1]: for an iid process we would only have a term with δ[k].

WSS because E[Yn] does not depend on n and RY [n, k] does not depend on n.

Jointly WSS because both Xn and Yn are WSS, and RXY [n, k] does not depend on n.

(g) 0.5 pnt Yes, Yn is also Gaussian distributed, because it is a linear combination of Gaussian vari-

ables.

Question 3 (9 points)

The power spectral density SX(f) of a random process X(t) is given by

SX(f) =

{
2 |f ± f0| ≤ B

2

0 otherwise

(a) Compute the average power of X(t).

(b) Determine the autocorrelation function RX(τ).

Hint: You may need to use Supplement table 1, 2, p. 29/30.

(c) X(t) can be generated by passing white noise through a filter. Assume the noise power

spectral density of the input is 1 W/Hz. Specify the filter transfer function H(f).

(d) Let Y (t) = X(t− 5). Determine SY (f).

Let Z(t) = 2X(t) + N(t), where N(t) is independent white noise with power spectral density

N0.

(e) Determine SZ(f).

(f) Determine SXZ(f) and SNZ(f).

Solution

(a) 1 pnt The average power is the area in the figure:

E[X2(t)] = RX(0) =

∫ ∞
−∞

SX(f)df = 4B

(b) 3 pnt First recognize that SX(f) is the convolution of a baseband lowpass filter with two delta

pulses in frequency:

SX(f) = SB(f) ∗ C(f)
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The autocorrelation function RX(τ) is the inverse Fourier transform of SX(f), hence (see

table)

RX(τ) = RB(τ) c(τ)

(In Signals & Systems, you learned that there was a factor 2π, however, it disappears

because we used f here and not ω.)

Next use the table:

sinc(2Wτ) ↔ 1

2W
rect

(
f

2W

)
cos(2πf0τ) ↔ 1

2

(
δ(f − f0) + δ(f + f0)

)
Note that B = 2W . Altogether, this gives

RX(τ) = 4B sinc(Bτ) cos(2πf0τ)

(You can check the scale by evaluating RX(0) = 4B, and compare to question (a).)

(c) 1 pnt The filter H(f) needs to satisfy |H(f)|2 = SX(f). Hence, it is a bandpass filter,

H(f) =

{√
2 |f ± f0| ≤ B

2

0 otherwise

where in fact the phase is arbitrary.

(d) 1 pnt The delay in time domain corresponds to a phase shift in frequency domain. This is a

filter G(f) with |G(f)|2 = 1. Since SY (f) = |G(f)|2SX(f), we have SY (f) = SX(f): the

same.

(e) 1.5 pnt The power spectral density of the noise is SN (f) = N0 (a constant).

Then, since the noise is independent,

SZ(f) = 4SX(f) + SN (f) =

{
8 +N0 |f ± f0| ≤ B

2

N0 otherwise

(f) 1.5 pnt

RXZ(τ) = E[X(t)Z(t+τ)] = E[X(t)(2X(t+τ)+N(t+τ)] = 2E[X(t)(X(t+τ)] = 2RX(τ)

Therefore: SXZ(f) = 2SX(f). Similarly, SNZ(f) = SN (f) = N0.
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Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING

Part 2: July 1st 2021
Block 1: Digital Signal Processing (14:55-15:55)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:50-16:05.

This block consists of three questions (24 points), more than usual. This will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. No points will be

awarded for results without a derivation. Write your name and student number on each

sheet.

Question 4 (11 points)

Let us consider a first-order IIR filter with impulse response

h(n) =
1

4

(
1

2

)n

u(n) +
1

3

(
1

2

)(n−1)

u(n− 1)

A Direct Form I realization of the filter is shown in Figure 1.

Figure 1

The outputs of the multipliers in this system are quantized using a midtread quantizer and a

sign-magnitude coding scheme with 3 bits plus the sign bit. The quantizer can encode values

between (−1, 1).

We model the effect of quantization as an additive noise source e(n), and we assume that e(n)

is an uncorrelated wide-sense stationary process that is uniformly distributed.

(2 p) (a) What is the variance of the quantization noise of this particular quantizer?

(3 p) (b) Now let us consider the quantization noise at the output of the filter. Compute the

variance of the quantization noise at the output of the filter!

(3 p) (c) Give an alternative (Direct Form I) realization of the filter! Is this implementation

better or worse in terms of quantization noise power?
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(3 p) (d) What is binary code (using the specified quantizer) of the 2nd output sample of the

filter in respone to the sequence [3
4 , 0, 0, 0, ...], taking into account quantization effects?

Solution

(a) σ2
E = ∆2

12 [1 p], where ∆ is the step size of the quantizer, that is ∆ = R
2b+1 = 2

23+1 = 0.125

with R the range of the quantizer and b is the number of bits. So, σ2
E = 0.1252

12 = 0.0013 [1

p].

(b) For a given quantizatin noise source σ2
Q = σ2

E

∞∑
n=−∞

|h(n)|2, where h(n) is the impulse

response of part of the system that the noise passes through. [1 p]. The total noise

variance is the sum of the output variance of all contributing noise sources. In our case,

the first noise source e1 (of multiplier a1 = 1
2) passes through the whole system, while the

other two (e1 and e2, corresponding to b0 = 1
4 and b1 = 1

3) appear directly at the output.

Therefore,

σ2
Qtotal = σ2

E1

∞∑
n=−∞

|h(n)|2 + σ2
E2 + σ2

E3[1p]

Let us write the impulse respone of the system in terms of the variables for the clarity of

the derivation: h(n) = b0a1
nu(n) + b1a

(
1
n−1)

u(n − 1)

For m = 0, the impulse response is h(0) = b0.
For m ≥ 1, sample m of the impulse response can be written as h(m) = a1b0(a1)

m - 1

+b1(a1)
m-1 . Therefore,

∞∑
n=−∞

|h(n)|2 = b20 +

∞∑
m=1

(a1b0a1
m-1 + b1a1

m-1)2 
 +

∞∑
n=0

a2
1b

2
0a

2n
1 + b21a

2n
1 + a1b0b1a

2n
1

= b20
1

1− a2
1

(a2
1b

2
0 + b21 + 2a1b0b1) = 0.34

Substituting back to the previous equation and using the answer to (a):

σ2
Qtotal = 0.0013 · (2 + 0.34) = 0.0030

(c) An alternative realization is obtained by switching the order of the sections as shown in

Figure 2. [1p]. In this case all errors pass through the second section only.[1p] Therefore,

σ2
Qtotal = 3

∆2

12
· 1

1− a2
1

= 0.0052

Which is worse (larger noise power) than the first realization [1p].

(d) We have established that the quantizer has step size 0.125, i.e. quantization levels at 0,

±1
8 ,±

2
8 , ...±

7
8 . [1 p].

2

∑∞
n=0

(a1b0a1
n + b1a1

n)2

= b20 +



Figure 2

Let us call the output of the first filter section v(n)!

The output of the first section is v(n) = x(n) + 1
2v(n− 1). The final output of the system

is y(n) = 1
4v(n) + 1

3v(n− 1). [1 p].

Therefore, v(0) = 3
4 , which is equal to a quantization level, so the quantized value is the

same.

v(1) = 0 + 1
2 ·

3
4 = 3

8 , which is also a quantization level. Then, y(1) = 1
4 ·

3
8 + 1

3 ·
3
4 = 3

32 + 1
4 .

The first term is closest to the quantization level 1/8, i.e. 0.001. The second term is at

the quantization level 2
8 , i.e. 0.010. Therefore, the quantized value of the second output

sample (i.e. y(1)) equals 0.011. [1 p].
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Question 5 (8 points)

Suppose that we want to record a single-channel EEG signal and store it for offline analysis. Our

storage capacity is limited, therefore, we will store 100 samples per second. We are interested

in analysing the signal in the frequency band 0− 40Hz, the signal content above 40Hz is of no

interest.

We are going to pass the analog EEG signal through the system represented by the block diagram

on Figure 3.

Figure 3

(1 p) (a) What is the purpose of the filters Haa(z) and Hda(z)?

(1 p) (b) What is the advantage of this system (compared to directly sampling at the desired

sampling rate)? Explain!

(2 p) (c) What are the specifications of the filter Haa(z) and Hda(z) in terms of pass, stop and

transition band?

(1 p) (d) What is the value of D?

(3 p) (e) Assuming that the spectrum of the signal Y3 is given by the sketch on Figure 4, sketch

the spectrum of the signal Y4! Indicate both physical and normalized frequencies!

Figure 4
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Solution

(a) Anti-aliasing [1 p].

(b) If we first oversample, a less steep anti-aliasing filter is enough in the analog domain.

Difficult (steep) filtering can happen in digital domain [1 p].

(c) For Haa(z) the passband is 0 − 40Hz (to preserve the signal of interest), stopband

above 100Hz (for anti-aliasing, due to 200Hz sampling rate of the A/D converter)

and therefore transition band between 40− 100 Hz. For the digital domain filter Hda

we need to remove frequencies above 50Hz (as final sampling rate will be 100Hz), so

our stopband starts at 50Hz, transition band 40 − 50Hz, passband the same as for

Haa [1 p per filter]

(d) D=2. (Downsampling from 200 to 100 Hz)

(e) The spectrum is given in Figure.[1 p for correct physical frequencies, normalized

freequencies and 1 p for correct image (repetitions) ] 5.

Figure 5
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Question 6 (5 points)

Sigma-delta-modulators use prediction, 1-bit quantization and oversampling to achieve high

SNR A/D conversion. Let us consider an input signal x[n], with a bandwidth B = 10kHz. The

first few values of its autocorrelation sequence Rxx are given as Rxx[0] = 100, Rxx[1] = 42,

Rxx[2] = 35.

1 p (a) Assume that the signal y[n] is given by:

y(n) = x[n]− x[n− 1] (1)

Is it advantageous to quantize the y[n] instead of x[n]?

2 p (b) Suggest a modification to Eq. 1 to improve the quantization scheme! Be as specific as

possible!

2 p (c) Recall that the quantization noise power of a first-order SDM can be expressed by

σ2
n ≈

1

3
π2σ2

e

(
2B

Fs

)3

(2)

where σ2
e is the quantization noise variance Fs is the chosen sampling rate. How should

we choose Fs in order to achieve an increase of 18dB in SNR?

Solution

(a) No, because Rxx[1]/Rxx[0] < 0.5. (see book 6.6.1 and 6.6.2 for details)

(b) Use prediction, i.e. y[n] = x[n]− ax[n− 1] with a = Rxx[1]/Rxx[0] = 42/100.

(c) According to the formula in Eq. 2, doubling the sampling rate reduces noise power with

9dB (= 10 log10(23)). So, 4x oversampling will result in 18dB. That is, Fs = 4 · FNyq =

4 · 2B = 80kHz.
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