
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING

Part 2: June 2nd 2020
Block 1: Digital Signal Processing (13:30-14:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25-14:35.

This block consists of three questions (22 points), more than usual. This will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. No points will be

awarded for results without a derivation. Write your name and student number on each

sheet.

Question 1 (9 points)

Given a recursive system depicted in the figure below.

(a) 1p Write down the difference equation describing the system.

(b) 1p What is the impulse response of the system?

Suppose that the system is implemented with fixed-point arithmetic based on three bits for

magnitude and a sign bit (SM representation). Suppose, further, that the quantization that takes

place after multiplication rounds the resulting product, such that the maximum quantization

error is 1
2 · 2

−b.

(c) 1p For this quantizer, make a table with 16 rows and 3 columns, to associate the 4-bit SM

representation to the corresponding numerical value. As the first column, show the input

range of values that leads to the corresponding quantized output.

(d) 2p Assume an input sequence

x[n] =

{
0.5 for n = 0

0 otherwise.

• Compute the first 5 samples of the quantized output signal, yq[0], · · · , yq[4].

• What is the range of amplitudes of the dead band of the quantized system?

• From which sample on does the system reach its steady-state output sequence?

(e) 1p Is this steady-state output sequence a constant value or an oscillation? Why?
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(f) 1p How can you change the system design (without changing its functionality) in order to

decrease the dead band?

(g) 2p Let’s consider now an arbitrary input and an additive noise model for the quantization

error in the above system. What is the variance of quantization error and the variance of

the output noise? Give the numerical values.

Solution

(a) y(n) = x(n)− 3
4y(n− 1).

(b) h(n) = (−3
4)nu(n).

(c) y ySM yq

− 1
16 ≤ y <

1
16 0.000 0

1
16 ≤ y <

3
16 0.001 1

8
3
16 ≤ y <

5
16 0.010 1

4
5
16 ≤ y <

7
16 0.011 3

8
7
16 ≤ y <

9
16 0.100 1

2
9
16 ≤ y <

11
16 0.101 5

8
11
16 ≤ y <

13
16 0.110 3

4
13
16 ≤ y <

15
16 0.111 7

8

(unused) 1.000 0

− 3
16 ≤ y < −

1
16 1.001 −1

8

− 5
16 ≤ y < −

3
16 1.010 −1

4

− 7
16 ≤ y < −

5
16 1.011 −3

8

− 9
16 ≤ y < −

7
16 1.100 −1

2

−11
16 ≤ y < −

9
16 1.101 −5

8

−13
16 ≤ y < −

11
16 1.110 −3

4

−15
16 ≤ y < −

13
16 1.111 −7

8

(d) The outputs of the system are listed below:

n y[n] ySM [n] yq[n]

0 y[0] = x[0] = 1
2 0.100 1

2

1 y[1] = x[1]− 3
4yq[0] = 0− 3

4 ·
1
2 = −3

8 1.011 −3
8

2 y[2] = x[2]− 3
4yq[1] = 0− 3

4 · −
3
8 = 9

32 = 8+1
32 0.010 1

4 rounding down to 8
32 = 1

4

3 y[3] = x[3]− 3
4yq[2] = 0− 3

4 ·
1
4 = − 3

16 1.001 −1
8 rounding up (alt.: −1

4)

4 y[4] = x[4]− 3
4yq[3] = 0− 3

4 · −
1
8 = 3

32 0.001 1
8 rounding down

5 y[5] = x[5]− 3
4yq[4] = 0− 3

4 ·
1
8 = − 3

32 1.001 −1
8 rounding down

The quantized system has a dead band with a range of amplitudes between (−1
8 ,

1
8). (If

the multiplication coefficient was slightly larger or with an alternative rounding rule, it

would have been between (−1
4 ,

1
4).)

The system is in the steady-state response from n = 3 on.

(e) It is an oscillation, because the pole is negative.

(f) Use more bits. (According to formula 9.6.5 changing the value of the multiplier would

also change the dead band, but that would of course change the impulse reponse, i.e., the

functionality of the system.)
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(g) σ2e = 2−2b

12 = 0.0013 and σ2q = σ2e
∞∑

k=−∞
h2(k) = 0.0013 · 1

1−(− 3
4
)2

= 0.003
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Question 2 (6 points)

In this question, we consider various methods of improving the signal-to-quantization-noise-ratio

in A/D converters: oversampling, noise shaping and differential quantization.

(a) 2p In the figure below, the power spectrum of a digital signal xd[n] is shown, along with

the variance of the quantization noise.

• Explain and illustrate with a similar sketch the effect of oversampling and subsequent

downsampling (with a factor of D) on the signal and the noise power spectrum.

• Using a similar sketch, explain the concept of noise shaping.

Next, we consider an analog signal xa(t) with autocorrelation function Rxaxa(τ) shown in the

graph below.

Note that the autocorrelation sequence Rxdxd [k] of the discrete-time signal xd[n] = xa(nT ) can

be expressed as Rxdxd [k] = Rxaxa(kT ), i.e., it can be considered as the sampled version of the

continuous-time autocorrelation function Rxaxa(τ) where T is the sampling interval.

(b) 2p Let us consider quantizing

d[n] = xd[n]− xd[n− 1] (1)

• How is the variance of the differential signal related to the variance of the original

signal? Give the formula!

• What is the minimum sampling rate for which the above differential quantization

is beneficial (i.e., the variance of the differential signal is smaller than that of the

original)?

(c) 2p Let us now consider a sampling rate of Fs = 10 kHz. How would you modify the first

order predictor in equation (1) in order to minimize the variance of d[n]?
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Solution

(a) Oversampling and subsequent downsampling results in a reduction of the noise level by

a factor of D, as shown by the sketch on the left. Noise shaping means that the noise

is filtered in the band of interest as shown on the sketch on the right. Therefore, noise

shaping results in a further increase of SNR.

Note that, in any case, we can filter the signal to exactly its bandwidth (±π
2 ), which leads

to a factor 2 reduction in noise power, but not more. This effect is not meant here.

Note the difference between oversampling and upsampling. For upsampling, we take a

sampled signal and insert zeros to increase the rate. That will not be beneficial in this

context. For oversampling, we sample at a higher rate, where the desired signal gives re-

dundant (highly correlated) samples while the white noise gives independent noise samples.

The LPF used for downsampling will then effectively average the noise, thereby reducing

its variance by a factor D.

(b) • The variance of d[n] is

σ2d = E[(x[n]− x[n− 1])2] = 2(Rx[0]−Rx[1])

while the variance of xd[n] is σ2x = Rx[0]. Thus, the variance of the differential signal

is smaller if

σ2d < σ2x ⇔ 2(Rx[0]−Rx[1]) < Rx[0]

⇔ Rx[0] < 2Rx[1]

⇔ Rx[1]

Rx[0]
>

1

2

Thus, differential quantization is beneficial in case Rxdxd [1]/Rxdxd [0] > 0.5.

• As Rxdxd [0] = 500, Rxdxd [1] should be at least 250. Therefore, T < 0.2 ms will work,

which coresponds to Fs = 1/T > 1/0.2ms = 5 kHz.

(c) Consider a first order predictor

d[n] = xd[n]− axd[n− 1]

Then, the variance of d[n] is σ2d = (1+a2)Rx[0]−2aRx[1]. The optimal a (which minimizes

σ2d) is found as
d

da
σ2d = 2aRx[0]− 2Rx[1] = 0 ⇔ a =

Rx[1]

Rx[0]

Fs = 10 kHz corresponds to T = 0.1 ms, for whichRxdxd [1] = Rxaxa(1T ) = Rxaxa(0.1ms) ≈
437.5 (around halfway between the grid lines of 375 and 500). Then, a = 437.5

500 = 0.875.
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Question 3 (7 points)

(a) 2p Prove the following two identities (potentially, using an example):

(b) 1p Given the following decimation filter:

where y0 and y1 are generated according to the following difference equations:

y0[n] =
1

4
y0[n− 1]− 1

3
x0[n] +

1

8
x0[n− 1]

y1[n] =
1

4
y1[n− 1] +

1

12
x1[n]

How many multiplications per output sample do you need in this implementation?

(c) 3p The decimation filter can also be implemented using the following system:

where

v[n] = av[n− 1] + bx[n] + cx[n− 1]

Determine a, b and c.

(d) 1p How many multiplications per output sample are needed in this implementation?

Solution

(a) For the downsampler in the first identity, it holds that

y(n) = x(Dn) ⇔ Y (z) =
1

D

D−1∑
i=0

X(z1/DW i
D), where WD = e−j2π/D
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Therefore, the output of the system on the left is

Y (z) = H(z)V1(z) = H(z)
1

2

1∑
i=0

X(z1/2W i
2) =

1

2
H(z)

1∑
i=0

X(z1/2W i
2)

The output of the system on the right can be written as:

Y (z) =
1

2

1∑
i=0

V2(z
1/2W i

2) =
1

2

1∑
i=0

H(zW 2i
2 )X(z1/2W i

2) =
1

2
H(z)

1∑
i=0

X(z1/2W i
2)

where the second equality results from V2(z) = H(zD)X(z), and the third equality results

from W 2i
2 = 1.

The second identity can be easily shown in the time domain (using arbitrary numbers as

example is also possible). Let us consider:

x1[n] = [x1[0], x1[1], x1[2], x1[3], · · · ] and x2[n] = [x2[0], x2[1], x2[2], x2[3], · · · ] .

Then, the system on the left gives:

y[n] = [x1[0] + x2[0], x1[2] + x2[2], x1[4] + x2[4], · · · ]

The system on the right gives (after the adder)

v[n] = x1[n]+x2[n] = [x1[0]+x2[0], x1[1]+x2[1], x1[2]+x2[2], x1[3]+x2[3], x1[4]+x2[4] · · · ] ,

which, after downsampling, gives:

y[n] = [x1[0] + x2[0], x1[2] + x2[2], x1[4] + x2[4], · · · ] .

(b) y0[n] costs 3 multiplications per sample, y1[n] costs 2 multiplications per sample, which is

a total of 5 per sample.

(c) Using the properties from part (a), the filter from part (b) can be written as

H(z) = H0(z
2) + z−1H1(z

2)

=
−1

3 + 1
8z
−2

1− 1
4z
−2 + z−1

1
12

1− 1
4z
−2

=
−1

3 + 1
12z
−1 + 1

8z
−2

1− 1
4z
−2

=
(1 + 1

2z
−1)(−1

3 + 1
4z
−1)

(1 + 1
2z
−1)(1− 1

2z
−1)

=
−1

3 + 1
4z
−1

1− 1
2z
−1 .

Therefore, a = 1
2 , b = −1

3 and c = 1
4 .

(Obviously, in view of the non-accidental pole/zero cancellation: we would normally start

from a given H(z) and then split it into H0(z
2) and H1(z

2).)

(d) v[n] costs 3 multiplications per sample. y[n] takes every second sample of v[n]. As such,

for y[n + 1] we need to calculate v[2n + 2], for which we also have to obtain v[2n + 1]

previously. This results in 6 multiplications per sample.
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Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Partial exam EE2S31 SIGNAL PROCESSING

Part 2: July 2, 2020

Block 2: Stochastic Processes (14:35-15:35)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:30–15:40

This block consists of three questions (25 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 4 (10 points)

Let the random sequence Xn be a constant 2, perturbed by zero mean i.i.d. noise Nn, with

Var[Nn] = σ2.

The random sequence Yn is obtained by filtering Xn, where the impulse response hn of the LTI

filter is given by

hn =


1 n = 0,

−1
2 n = 1,

0 otherwise.

Yn
Xn

Nn

hn2

(a) Show that the auto-correlation sequence of Xn is given by

RX [k] = 4 + σ2δ[k] .

(b) Find E[Yn].

(c) Find the auto-correlation RY [n, k] and the auto-covariance CY [n, k].

(d) Is Yn i.i.d.? Is Yn wide sense stationary? (Motivate)

(e) Find the cross-correlation RXY [n, k] and cross-covariance CXY [n, k].

(f) Are Xn and Yn jointly wide sense stationary? (Motivate)

(g) Compute the average power of Yn.

(h) If, moreover, Nn is Gaussian distributed, then is Yn Gaussian distributed? (Motivate)
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Solution

(a) 1 pnt Since Xn is i.i.d., we know CX [k] = σ2δ[k]. Then

RX [k] = CX [k] + E[X2] = σ2δ[k] + 4 .

(b) 1 pnt

Yn = Xn −
1

2
Xn−1

E[Yn] = E[Xn]− 1

2
E[Xn−1] = 2− 1 = 1 .

(c) 2 pnt

RY [n, k] = E[YnYn+k] = E[(Xn −
1

2
Xn−1)(Xn+k −

1

2
Xn+k−1)]

= E[XnXn+k]−
1

2
E[Xn−1Xn+k]−

1

2
E[XnXn+k−1] +

1

4
E[Xn−1Xn+k−1]

= 4 + σ2δ[k]− 1

2

(
4 + σ2δ[k + 1]

)
− 1

2

(
4 + σ2δ[k − 1]

)
+

1

4

(
4 + σ2δ[k]

)
= 1 + σ2

(
5

4
δ[k]− 1

2
δ[k + 1]− 1

2
δ[k − 1]

)

CY [n, k] = RY [n, k]− E[Yn]E[Yn+k] = σ2
(

5

4
δ[k]− 1

2
δ[k + 1]− 1

2
δ[k − 1]

)
(d) 1 pnt Not i.i.d.: CY [n, k] shows clearly that Yn is not independent from Yn−1. WSS because

E[Yn] is independent of n and CY [n, k] is independent of n.

(e) 2 pnt

RXY [n, k] = E[XnYn+k] = E[Xn(Xn −
1

2
Xn−1)]

= E[XnXn]− 1

2
E[XnXn−1]

= 4 + σ2δ[k]− 1

2

(
4 + σ2δ[k − 1]

)
= 2 + σ2

(
δ[k]− 1

2
δ[k − 1]

)

CXY [n, k] = σ2
(
δ[k]− 1

2
δ[k − 1]

)
(f) 1 pnt Yes, because Xn and Yn are each WSS, and CXY [n, k] only depends on k.

(g) 1 pnt The average power is E[Y 2
n ] = RY [0] = 1 + 5

4σ
2.

(h) 1 pnt Yes because the sum of Gaussian random variables is again a Gaussian random variable.
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Question 5 (10 points)

For this question, you may want to use Table 1, printed at the end of the exam.

Assume that X(t) is a white Gaussian noise process with variance σ2 = 4. The signal is filtered

by an LTI filter with impulse response

h(t) =

{
e−5t t ≥ 0

0 otherwise

The output signal is denoted by Y (t).

(a) Determine E[Y (t)].

(b) Determine the input power spectral density SX(f).

(c) Determine the output power spectral density SY (f), and sketch a plot of it (indicate values

on the axes).

(d) Determine the autocorrelation function of the output, RY (τ).

(e) Determine the average output power, E[Y 2(t)].

(f) Determine P[Y (t) > 0.2].

(g) Let Z(t) = Y (t− 3). How is the power spectral density of Z(t) related to that of Y (t).

Note: You may express your answer for (f) in terms of Φ(z) or Q(z).

Solution

(a) 1 pnt E[Y (t)] = µX
∫∞
−∞ h(t)dt = 0 as µX = 0.

(b) 1 pnt RX(τ) = σ2δ(τ) so that SX(f) = σ2 = 4.

(c) 3 pnt Use Table 1, a = 5,

H(f) =
1

5 + j2πf
=

1

5 + jΩ
,

with Ω = 2πf .

SY (f) = |H(f)|2SX(f) =
σ2

(5 + jΩ)(5− jΩ)

=
σ2

25 + Ω2

=
4

25 + 4π2f2

Plot: ...

Cf. a first-order Butterworth response. The -3dB point is at f = 2π
5 . The plot is flat at

f = 0.
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(d) 2 pnt The output autocorrelation function is (use Table 1, a = 5)

RY (τ) =
σ2

10
e−5|τ |

Therefore, the output power is E[Y 2(t)] = RY (0) = σ2

10 = 0.4.

(e) 2 pnt We know µY = 0 and σY = 2√
10

.

P[Y (t) > 0.2] = P

[
Y (t)

σY
>

0.2

σY

]
= P

[
Y (t)

σY
> 0.1

√
10

]
= Q(0.316) = 0.376.

(f) 1 pnt They are the same: SZ(f) = SY (f), because Z(t) = Y (t) ∗ g(t) with g(t) = δ(t − 3);

G(f) = e−j3·2πf , so that

SZ(f) = |G(f)|2SY (f) = SY (f) .

Question 6 (5 points)

Suppose that X(t) is a wide sense stationary (WSS) random process with autocorrelation func-

tion RX(τ).

(a) Is Y (t) = X(at) + b WSS, for arbitrary scalars a, b? If so, specify RY (τ).

(b) Is Y (t) = X(t− 2) WSS? If so, specify RY (τ).

(c) Is Yn = X(nT ) a WSS sequence, for T > 0? If so, specify RY [k].

(d) Suppose that RX(τ) = δ(τ)−1. Is this a valid autocorrelation function ofX(t)? (Motivate)

(e) Give an example of a random sequenceXn, that hasRX [k] = (−1)k+δ[k] as autocorrelation

sequence.

Note: a yes/no answer without motivation will not receive points.

Solution

(a) 1 pnt Yes: Let µX = E[X(t)] (a constant, because of WSS), then E[Y (t)] = µX + b is constant,

and

RY (t, τ) = E[Y (t)Y (t+τ)] = E[(X(at)+b)(X(a(t+τ))+b)] = RX(aτ)+2b µX+b2 = RY (τ)

does not depend on t.

(b) 1 pnt Yes: E[Y (t)] = µX is constant, and

RY (t, τ) = E[Y (t)Y (t+ τ)] = E[X(t− 2)X(t− 2 + τ)] = RX(τ)

does not depend on t.

(c) 1 pnt Yes; E[Yn] = µX is constant, and

E[YnYn+k] = E[X(nT )X((n+ k)T )] = RX(kT )

does not depend on n.

4



(d) 1 pnt This is in general not straightforward to determine. Clearly it is independent of time t.

It satisfies the three conditions (Thm 13.12). However, the corresponding power spectral

density would be

SX(f) = 1− δ(f)

and this is not positive for all f (namely, for f = 0 it is −∞). So it is not a valid

autocorrelation function.

(e) 1 pnt E.g., Xn = (−1)nA+Nk, where A is a random variable with E[A2] = 1, and Nk is a white

noise sequence (unit variance).

Note: your example must be a random sequence, or else you cannot determine RX [k].
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