
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Resit exam EE2S31 SIGNAL PROCESSING

July 31, 2020

Block 1: Stochastic Processes (13:30-15:00)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:55–15:10

This block consists of four questions (29 points); more than usual, and this will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. Write your name and

student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (8 points)

Random variables X and Y have joint PDF

fX,Y (x, y) =

{
c −1 ≤ x ≤ y ≤ 1

0 otherwise.

(a) Find the constant c.

(b) Find fY (y) and fX|Y (x|y).

(c) Find E[Y ].

(d) Find X̂M (Y ), the minimum mean square error (MMSE) estimator for X given a single

sample of Y .

(e) Find ŶML(X), the maximum likelihood estimator for Y given a single sample of X.

Solution
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(a) 1 pnt ∫ ∞
x=−∞

∫ ∞
y=−∞

fX,Y (x, y) dy dx =

∫ 1

y=−1

∫ y

x=−1
c dx dy

= c

∫ 1

−1
(y + 1) dy

= c

[
1

2
y2 + y

]1
0

dx

= 2c

Hence c = 1
2 .

(b) 2 pnt For −1 ≤ y ≤ 1,

fY (y) =

∫ y

x=−1
c dx = c(y + 1) , −1 ≤ y ≤ 1

The complete PDF is

fY (y) =

{
1
2(y + 1) −1 ≤ y ≤ 1

0 otherwise.

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=


1

y + 1
−1 ≤ x ≤ y

0 otherwise

(c) 1 pnt

E[Y ] =

∫ ∞
−∞

y fY (y) dy = c

∫ 1

−1
y(y + 1) dy

=
1

2

[
1

3
y3 +

1

2
y2
]1
−1

=
1

3

(d) 2 pnt The MMSE is always X̂M (Y ) = E[X|Y ]. Using fX|Y (x|y),

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y) dx

=

∫ y

−1
x

1

1 + y
dx

=
1

1 + y

[
1

2
x2
]y
x=−1

=
1

1 + y

(
1

2
y2 − 1

2

)
=

1

2
(y − 1)

Then X̂M (Y ) = E[X|Y ] =
1

2
(Y − 1).
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(e) 2 pnt By definition, ŷML(x) = arg maxy fX|Y (x|y). Then

fX|Y (x|y) =

{
1
y+1 −1 ≤ x ≤ y
0 otherwise

which should be seen as a function on y. For any x, this function has a support on

x ≤ y ≤ 1.

arg max
y,y≥x

1

y + 1
= x

Hence, ŶML(X) = X.

Question 2 (7 points)

We flip a coin n times and count how many times we observe “heads”; let P̂n be the estimated

probability of heads (the relative frequency of occurence).

Assume the coin is fair; the true probability of heads is p = 0.5.

(a) Find E[P̂n] and Var[P̂n].

(b) Use the Chebyshev inequality to find an upper bound on the probability that P̂100 is within

0.1 of p.

(c) Is P̂n a consistent estimator of p? (Motivate.)

(d) For large n, we assume that P̂n can be approximated by a Gaussian distribution. Use this

to estimate the probability that P̂100 is within 0.1 of p.

Note: See Table 4.1 or 4.2 (page 129/130) for Φ(z) or Q(z).

Solution

(a) 2 pnt Let A be the event of “heads”, then the indicator function XA has a Bernouilli (p = 0.5)

random variable.

E[XA] = p = 0.5, var[XA] = p(1− p) = 0.25 .

Let Xi denote XA on the ith trial, and let Mn(XA) be the sample mean (for n samples).

Since

P̂n = Mn(XA) =
1

n

n∑
i=1

Xi

is a sum of n independent random variables,

var[P̂n] =
1

n2

n∑
i=1

Var[Xi] =
p(1− p)

n
=

0.25

n

(b) 2 pnt Since P̂100(A) = M100(XA), we can use Theorem 10.5(b) to write (with c = 0.1)

P
[
|P̂100 − p| < c

]
≥ 1− Var[P̂n]

c2
= 1− 0.25

100c2
= 0.75
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(c) 1 pnt See Definition 10.3. Here,

P
[
|P̂n − p| ≥ ε

]
≤ Var[XA]

nc2

so that

lim
n→∞

P
[
|P̂n − p| ≥ ε

]
= 0

(d) 2 pnt Let µ = p = 0.5 and σ =
√

0.25
n = 1

20 and c = 0.1.

P
[
|P̂n − p| < cε

]
= P

[
−c < P̂n − p < c

]
= P

[
− c
σ
<
P̂n − µ
σ

<
c

σ

]
= P

[
− c
σ
< Z <

c

σ

]
≈ 2Φ(

c

σ
)−1

With c
σ = 2, we find (table 4.2) that Φ(2) = 0.97725, so that this probability is 0.95450.

Question 3 (8 points)

Let W be an exponentially distributed random variable, with pdf

fW (w) =

{
e−w w ≥ 0

0 otherwise.

Consider the random process X(t) = t−W .

(a) Draw three realizations of X(t).

(b) Determine the CDF FW (w) and FX(t)(x), and the pdf of X(t).

(c) Determine E[W ] and compute the expected value function, µX(t).

(d) Determine E[W 2] and compute the autocovariance function, CX(t, τ).

(e) Is X(t) a WSS random process? (Motivate)

(f) Is it an i.i.d. process? (Motivate)

Solution

(a) 1 pnt Pick w following an exponential distribution (hence w > 0, then plot X(t) = t − w as

function of t:
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(b) 2 pnt W has an exponential distribution with λ = 1. (See Thm. 4.8)

FW (w) = P[W < w] =

{
1− e−w w ≥ 0

0 w < 0

FX(t)(x) = P[X < x] = P[t−W < x] = P[W > t− x]

= 1− P[W < t− x] =

{
ex−t) x ≤ t
1 x > t

fX(t)(x) =
dFX(t)(x)

d x
=

{
ex−t) x ≤ t ,
0 x > t

(c) 1.5 pnt For an exponential distribution with λ = 1, E[W ] = 1

µX(t) = E[t−W ] = t− E[W ] = t− 1 .

(d) 1.5 pnt E[W 2] = 2.

CX(t, τ) = E[X(t)X(t+ τ)]− µX(t)µX(t+ τ)

= E[(t−W )(t+ τ −W )]− (t− 1)(t+ τ − 1)

= t(t+ τ)− E[(2t+ τ)W ] + E[W 2]− t(t+ τ) + 2t+ τ − 1

= −(2t+ τ)E[W ] + 2 + 2t+ τ − 1

= 1

(e) 1 pnt Not WSS because µX(t) is dependent on t.

(f) 1 pnt Not iid because samples are clearly correlated to each other (not independent) and samples

do not have the same distribution (it depends on t).

Question 4 (6 points)

In this question, all signals are considered in the frequency domain.

The fundamentals behind a noise canceling headphone are schematically drawn in the figure.

H1

H2

H0 Y

V

mic1

mic2

G

ref signal

ear signal
−

loudspeaker
X

desired music

environ. noise
W

We wish to listen to music X(f) transmitted over a loudspeaker with unknown response H0(f),

but the ear signal Y (f) is disturbed by unknown environment noise W (f), which has been

filtered by an unknown channel response H1(f). We measure the ear signal with microphone 1.

An additional microphone (mic2) also captures the noise signal, but it is filtered by an unknown

filter H2(f).
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We wish to design a filter G(f) such that the noise signal on Y is perfectly canceled. While

we design G(f), it is not included in the schematic.

(a) What is the desired solution for G(f) in terms of H1(f) and H2(f)?

(b) Show that H−12 (f) = |H2(f)|−2H∗2 (f).

X(f) and W (f) are considered to be independent random processes, with power spectral den-

sities SX(f) and SW (f), respectively.

(c) Give expressions for SY (f), SV (f) and SY V (f) in terms of SX(f) and SW (f).

(d) Which of these (cross) power spectral densities can we observe?

(e) Give an expression for G(f) in terms of observed quantities.

Solution

(a) 1 pnt G(f) = H−12 (f)H1(f).

(b) 1 pnt It is the inverse because H−12 (f)H2(f) = |H2(f)|−2H∗2 (f)H2(f) = 1.

(c) 2 pnt

SY (f) = |H0(f)|2SX(f) + |H1(f)|2SW (f)

SV (f) = |H2(f)|2SW (f)

SY V (f) = H1H
∗
2SW (f)

(d) 1 pnt Using the microphone signals, we can observe Y (f) and V (f), and estimate SY (f), SV (f)

and SY V (f).

Presumably we also know the input signal X(f) and know SX(f). But this is not used

here. In actuality, X(f) is also disturbed by an unknown filter (not drawn).

(e) 1 pnt

G(f) = S−1V (f)SY V (f)

In practice, there are several complications: some signal X(f) may leak into V (f) causing

cancellation of the desired signal, H2(f) may have a zero at some frequency, preventing inversion,

and H2(s) may have zeros in the right hand s-plane, these become unstable poles when we invert

the channel.
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Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Circuits and Systems

Resit exam EE2S31 SIGNAL PROCESSING

July 31, 2020
Block 2: Digital Signal Processing (15:00-16:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 16:30-16:45.

This block consists of three questions (25 points), more than usual. This will be taken

into account during grading. Answer in Dutch or English. Make clear in your answer how

you reach the final result; the road to the answer is very important. No points will be

awarded for results without a derivation. Write your name and student number on each

sheet.

Question 5 (7 points)

A transfer function H(z) is an allpass function if it satisfies |H(ejω)|2 = 1. Let h[n] be the

corresponding impulse response.

(a) Use a simple argument to show that, for any allpass function,
∑

n |h[n]|
2 = 1.

Given two realizations of a first-order allpass function:

H(z) =
a+ z−1

1 + az−1
, |a| < 1

−

a

y[n]x[n] z−1

z−1

−

z−1

x[n] y[n]

a

a

In the realization in hardware, each multiplier rounds the resulting product to a finite number

of bits, such that the roundoff error is in the interval [−∆

2
, ∆
2
].

This is modeled by introducing a noise source ei[n] at the output of each multiplier (i = 1, 2, 3).

Assume that all roundoff errors are iid random variables with uniform distribution.

(b) What is the variance of the equivalent noise source at the output of each multiplier?

(c) Determine the transfer function Hi(z) of each ei[n] to the output y[n].

(d) For each realization, determine the variance of the quantization noise at the output y[n].

Which realization is preferred?

(e) What are two other aspects based on which we would prefer one realization over the other?
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Solution

(a) 1 pnt Use Parseval:
∑

n |h[n]|
2 = 1

2π

∫ π

−π
|H(ejω)|2dω = 1.

(b) 1 pnt σ2
e = ∆2

12
.

(c) 2 pnt For the first realization, the transfer function H1(z) of e1[n] → y[n] is:

e1[n]
a

y[n]

−1
z−1

z−1

Y (z) = E1(z)
1− z−2

1 + az−1
→ H1(z) =

1− z−2

1 + az−1
= 1− az−1 −

1− a2

1 + az−1
· z−2

The noise power is given by σ2
y = ∆2

12

∑

(h1[n])
2, i.e.,

σ2
y =

∆2

12

(

1 + a2 + (1− a2)2(1 + a2 + a4 + · · · )
)

= 2
∆2

12

This result also follows more directly by using H1(z) = 1 − z−1H(z), and the fact that
∑

n |h[n]|
2 = 1.

(d) 2 pnt For the direct realization,

−

z−1

y[n]
a

e3[n]

a

−
e2[n]

H2(z) = −H(z) = −
a+ z−1

1 + az−1
= −

[

a+ z−1(1− a2)(1 − az−1 + a2z−2 + · · · )
]

H3(z) = 1

The quantization noise power at the output is

σ2
y =

∆2

12

(

1 + a2 + (1− a2)2(1 + a2 + a4 + · · ·
)

= 2
∆2

12

which can also be obtained more directly using
∑

n |h2[n]|
2 = 1. It follows that both

realizations have the same quantization noise power at the output (which is not a priori

obvious).

(e) 1 pnt – The first realization only depends on 1 parameter, and will always be an allpass, even

if a is quantized.

– The first realization only uses 1 multiplier and will probably be simpler or faster to

implement

– For each new incoming sample, the first realization will require 3 clock beats to produce

a new output sample. The direct realization will require 4 clock beats.

– The second realization is minimal.
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Question 6 (9 points)

(a) Why would we ever want to use a circular convolution?

(b) Compute the circular convolution (of length 5) of the signal h[n] = [ 1 , 2, 0, 0, 0] with

x[n] = [ 1 , 2, 3, 4, 5]. (Show the steps in the calculation.)

(c) If h[n] has length L samples, and x[n] has M samples, then how can we use a circular

convolution to implement a linear (normal) convolution?

We sample an audio signal xa(t) at 40 kHz, resulting in x[n] = xa(nT ). We sample during 2.5

seconds. Next, we filter the signal by an FIR filter h[n] that has 1024 coefficients.

(d) What is the maximal permissible frequency in the signal xa(t)?

(e) How many multiplications do we need for a direct implementation of the convolution

y = h ∗ x? (You may ignore edge effects.)

(f) To reduce the number of operations, we implement the convolution by an FFT using the

overlap-add technique.

Describe step-by-step how this can be done. Also draw a block diagram of this process.

(g) How many multiplications are needed now?

[Assume that an FFT of order N has a complexity of N log2(N) multiplications.]

(h) As a side effect of this technique, we can simply produce a time-frequency diagram of x[n].

What is the resolution in time and in frequency in this diagram?

Solution

(a) 1 pnt If we want to use an FFT to efficiently implement (linear) convolution in frequency domain,

then we actually obtain a circular convolution

(b) 1 pnt

k = 0 : h[0]x[n] = [1 2 3 4 5]

k = 1 : h[1]x[(n − 1)5] = [10 2 4 6 8]

y = [11 4 7 10 13]

(c) 1 pnt Zero pad both signals to a common length N = L+M −1. In that case, the periodic shift

does not give overlap in the output signal.

(d) 1 pnt 20 kHz

(e) 1 pnt In 2.5 seconds, we have 100 kS (kilo-samples). For each sample, we need 1024 multiplica-

tions (“flops”). In total: 102 Mflops.

(f) 1 pnt The signal is split in blocks of M = 1024 samples. Suppose that xi[n] is the ith block of

1024 samples, extended with zeros to N = L + M = 2048 samples (1 more than strictly

necessary). We take the FFT of xi[n], call it Xi[k]. It also has 2048 samples.

The filter h[n] is extended using zero padding to 2048 samples. Let H[k] be its FFT

(N = 2048 samples).
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Next: pointwise multiplication: Yi[k] = H[k]Xi[k]. Determine the IFFT, resulting in yi[n]

consisting of 2048 samples. This covers 2 blocks and overlaps with yi+1[n]. The last 1024

samples of yi[n] overlaps with the first 1024 samples of yi+1[n].

Finally, we use linearity (the response of
∑

xi[n] is
∑

yi[n]) and add the overlapping parts

of the partial responses.

Block scheme: zie slides DFT (“Overlap-add”).

Alternatively, extend the complete x with 1023 zeros, and extend h with 100 000 -1 zeros,

and compute Y [k] (length 101 023 samples) using FFT/IFFT. It has a higher complexity

and can only be done after the full signal was received (no audio streaming)

(g) 2 pnt FFT of h[n] is done once (N = 2048).

FFT of the xi[n]: we have 98 blocks of 1024 samples. We take 98 FFTs each of N = 2048

samples.

IFFT of each yi[n]: again 98 FFTs of N = 2048 samples.

Total: 1 + 98 + 98 = 197 times N log2(N) is 197 × 2048 × 11 = 4.4 Mflops. Add to this:

the frequency domain multiplications, 98×N = 200 kflops. Total: 4.6 Mflops.

(The alternative solution has complexity of the FFTs 3N log(N), with N = 101024, gives

5.0 Mflops. Add to this: N multiplications in frequency domain. Total: 5.1 Mflops, not

much more!)

(h) 1 pnt In time, we took FFTs of blocks of 1024 samples. Each block gives 1 time sample. The

resolution is 2.5/1024 = 24 ms.

In frequency, we have 2048 samples spanning 40 kHz, the resolution is 40000/2048 = 19.5

Hz.

Question 7 (9 points)

An audio signal has frequencies until 20 kHz. We are given x[n] in studio quality: the sample

rate is 48 kHz. To transfer this to a CD, we need to reduce the sample rate to 44 kHz.

For this, we are using the following process:

x[n] M ↓L ↑ H(z) y[n]

rate 44 kHzrate 48 kHz

y1[n] y2[n]

(a) Determine suitable values for the upsampling factor L and downsampling factor M .

(b) What is the role of the filter H(z)? Give suitable specifications.

(c) Draw schematically spectra of x[n], y1[n], y2[n] and y[n]. (Indicate values for both ω and

F on the frequency axis.)

(d) Is it allowed to swap the upsampler and downsampler?

(e) Suppose that the required filter H(z) is an FIR filter with 264 coefficients. How many

multiplications per second are needed to implement the filter in the shown process?

(f) Can this also be done more efficiently? (If so, indicate how, and how much more efficiently.)
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Solution

(a) 1 pnt L = 11, M = 12 so that 48 L
M

= 44.

(b) 2 pnt The filter is needed for: (1) removing the additional copies in the spectrum caused by

upsampling (remove frequencies above 24 kHz); (2) anti-aliasing before the sample rate

reduction / decimation (remove all frequencies above 22 kHz so that resampling at 44 kHz

does not cause aliasing).

Combining both functions in one requires H(z) to be a lowpass filter that cuts off at 22

kHz (or ω = π
12
).

Since the original signal only has frequencies until 20 kHz, we can use a filter with passband

until 20 kHz, transition band 20-28 kHz, stopband above 28 kHz. (As this is a digital filter,

you should actually convert these values into ω, taking the local sample rate into account:

11 · 48 = 528 kS/s).

(c) 3 pnt (The fundamental interval is shaded.)

F [kHz]
ω

|X(ω)|

0
0

|Y1(ω)|

|Y2(ω)|

|Y (ω)|

0
0

F [kHz]
ω

0
0 ω

F [kHz]

0
0 ω

F [kHz]

24 48
π 2π

48
π/11
24

π
264

264
ππ/11

4824

22 44
2ππ

2820

(d) 1 pnt No: if you first downsample, then you throw away information that later you cannot

recover; after decimating by a factor 12, the new sample frequency is 4 kHz, and fatal

aliasing will occur.

Note: if H(z) was not present, and since M , L are relatively prime, these two blocks can

be swapped. But with H(z) in the middle, it is not allowed.
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(e 1 pnt) The filter runs at the high sample rate of 48 · 11 = 528 kHz. The number of flops/s is

528 · 264 = 139 Mflops/s.

(f) 1 pnt Yes, you don’t need to compute the samples that the downsampler will throw away anyway.

(This corresponds to placing the downsampler in front of the filter coefficients.) The filter

will then run at 44 kHz, requiring 44 · 264 = 11.6 Mflops/s, a reduction by a factor of 12.

You could also combine the filter with the upsampler, that will give a reduction by a factor

of 11.
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