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Partial exam EE2S31 SIGNAL PROCESSING
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Closed book; two sides of one A4 of handwritten notes permitted

This exam consists of four questions (33 points). Answer in Dutch or English. Make clear

in your answer how you reach the final result; the road to the answer is very important.

Write your name and student number on each sheet.

Question 1 (8 points)

Given is the stochastic process X(t) = A|t| with random variable A uniformly distributed in the

(continuous) interval [2, 4].

(1 p) (a) Sketch three different realizations of process X(t).

3 p) (b) Calculate the cumulative distribution function (CDF) FX(t)(x), as well as the proba-

bility density function (PDF) fX(t)(x) for t 6= 0.

(1 p) (c) Calculate the expected value E[X(t)].

(2 p) (d) Calculate the autocorrelation function R(t, τ).

(1 p) (e) Argue whether or not process X(t) is stationary, and, whether or not process X(t)

is wide sense stationary (WSS).

Solution

(a)

(b) FX(t)(x) = P (X(t) ≤ x) = P (A|t| ≤ x) = P (A ≤ x
|t|) =

∫

x

|t|

2
1
2da =

[

a
2

]

x

|t|

2 = 1
2

x
|t| − 1 for

2|t| ≤ x ≤ 4|t|. Altogether,

FX(t)(x) =

{

1
2

x
|t| − 1 for 2|t| ≤ x ≤ 4|t|

0 otherwise.

fX(t)(x) =
dFX(t)(x)

dx
=

{

1
2

1
|t| for 2|t| ≤ x ≤ 4|t|

0 otherwise.

(c) E[X(t)] = E[A]|t| = 3|t|, or, using the calculated pdf:

E[X(t)] =

∫ +∞

−∞
xfX(t)(x) =

∫ 4|t|

2|t|

x

2

1

|t|
dx =

[

x2

4|t|

]4|t|

2|t|

=
1

4|t|
(16|t|2 − 4|t|2|) = 3|t|.

(d) R(t, τ) = E[A|t|A|t+τ |] = E[A2]|t||t+τ | =
∫ 4
2 a2 12da|t||t+τ | = 43−23

6 |t||t+τ | = 28
3 |t||t+τ |.

Or, via the long route:

R(t, τ) = E[A|t|A|t+ τ |] =

∫ 4|t|

2|t|

∫ 4|t+τ |

2|t+τ |
x1x2fX(t),X(t+τ)(x1, x2)dx2dx1

1



What is fX(t),X(t+τ)(x1, x2)?

fX(t),X(t+τ)(x1, x2) = fX(t+τ)|X(t)(x2|x1)fX(t)(x1) = δ

(

x1 − x2
|t|

|t+ τ |

)

fX(t)(x1)

= δ

(

x1 − x2
|t|

|t+ τ |

)

1

2|t|

(Given x2, x1 is completely determined.)

R(t, τ) = E[A|t|A|t + τ |] =

∫ 4|t|

2|t|

∫ 4|t+τ |

2|t+τ |
x1x2δ

(

x1 − x2
|t|

|t+ τ |

)

fX(t)(x1)dx2dx1

=

∫ 4|t|

2|t|
x21

|t+ τ |

|t|

1

2|t|
dx1 =

[

x31
6

|t+ τ |

|t|2

]
∫ 4|t|

2|t|
=

28

3
|t||t+ τ |.

(e) Process X(t) is not stationary, as the pdf X(t)(x) changes over time, and, X(t) is not wide

sense stationary (WSS) as both the expected value and autocorrelation function depend

on time t.

Question 2 (8 points)

For this question you might want to make use of Table 1, included at the end of this exam.

Given is the time continuous WSS procecss X(t) with autocorrelation function

RX(τ) = e−|τ |100 + 4

and expected value E[X(t)] = 2. Process X(t) is sampled with fs = 100 samples per second,

leading to the process X[n].

(1 p) (a) Give the autocorrelation function RX [k] and expected value E[X[n]] of the sampled

process X[n].

Given is a system with impulse response h[n] and the abovementioned sampled process X[n] as

input. The output is denoted by Y [n].

(1 p) (b) Assuming that h[n] is of the form h[n] = anu[n], with u[n] the unit-step function,

|a| ≤ 1, and E[Y [n]] = 8, calculate constant a.

For the remaining part of this question, assume RX [k] is given by RX [k] =
(

1
2

)|k|
.

(2 p) (c) Give the magnitude response |H(φ)| that would completely decorrelate process X[n].

Now assume h[n] = δ[n − 3].

(2 p) (d) Calculate the cross-correlation RXY [k] between input and output.

(2 p) (e) Calculate the autocorrelation RY [k] of the output.
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Solution

(a) The process is WSS, so E[X[k]] = E[X(t)] and RX [k] = RX(kTs) = e−|k| + 4.

(b) E[Y ] = E[X]
∑∞

n=0 a
n = 2

1−a = 8, so a = 3/4.

(c) Decorrelated output, means Ry[k] = cδ[k], so Sx(φ) = c, with c any constant.

Sx(φ) =
1− (1/2)2

1 + (1/2)2 − 2(1/2) cos(2πφ)
=

3/4

5/4− cos(2πφ)
.

|H(φ)| =

√

Sy(φ)

SX(φ)
=

√

c
1−(1/2)2

1+(1/2)2−2(1/2) cos(2πφ)

=

√

c(5/4 − cos(2πφ))

3/4
.

(d) RXY [k] =
∑∞

j=0 δ[j − 3]
(

1
2

)|k−j|
=

(

1
2

)|k−3|

(e) A delay will not change autocorrelation of the input. The autocorrelation function therefore

equals RY [k] = RX [k]. Also, we can calculate

RY [k] =

∞
∑

i=−∞

h[−i]RXY [k−i] =

∞
∑

i=−∞

δ[−i+3]RXY [k−i] =

∞
∑

i=−∞

δ[−i+3]

(

1

2

)|k−3−i|

=

(

1

2

)|k|

Question 3 (6 points)

Consider the following multirate filter structure:

↑ 3↓ 3x[n] y1[n]

y0[n]

y2[n]

H0(z)

H1(z)

H2(z)

in which H0(z), H1(z) and H2(z) are a lowpass, bandpass, and highpas filter, respectively, as

follows:

0

|H1(ω)|

1

π/3 π0

|H0(ω)|

1

π/3 π 0

|H2(ω)|

1

π/3 π2π/3 2π/3
ω ω ω

The real-valued input signal x[n] has the following amplitude spectrum:

0

|X(ω)|

1

π/3 π2π/3 ω

Draw the amplitude spectra of the outputs y0[n], y1[n], y2[n].
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Solution

Because x[n] is real-valued, it has a symmetric spectrum, and we will draw both sides.

After downsampling: Z(ω) =
1

3

2
∑

k=0

X(
ω − 2πk

3
). We draw a couple of periods:

π 3π2π−π−3π −2π

0

1

ω

0

|X(ω−4π

3
)|

1

ω

0

|Z(ω)|

1/3

ω

−π−3π −2π

−π−3π −2π

−π−3π −2π π 3π2π

π 3π2π

π 3π2π

|X(ω−2π

3
)|

0

|X(ω
3
)|

ω

1

After upsampling: Y (ω) = Z(3ω) = 1
3

∑

X(ω − 2
3πk)

0

|Y1(ω)|

1/3

ω−π/3−π −2π/3 π/3 π2π/3

0

|Y2(ω)|

1/3

ω−π/3−π −2π/3 π/3 π2π/3

0

|Y3(ω)|

1/3

ω−π/3−π −2π/3 π/3 π2π/3

0

|Y (ω)|

ω−π/3−π −2π/3 π/3 π2π/3

1/3

Question 4 (11 points)

An oversampling AD converter operates at M = 256 times the desired sampling rate f0 = 100

kHz, en quantizes samples at 4 bits. Digitally, the sample rate is reduced by a factor M = 256.

See figure:

fs = M · f0

H(z) y[n]Qx(t)

4 bits

↓ M
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The filter is given by H(z) = 1 + z−1 + · · ·+ z−(M−1).

a Draw the amplitude spectrum of H(z) (clearly mark the frequency axis).

In this plot, what is the location (value of ω) of the first zero of the transfer function?

b What is the role of this filter?

If it was an ideal filter, what would be its specification?

c What is the effect of this filter on the quantization noise?

d Assume that the quantization noise is white. How many bits accuracy do you expect at

the output? (Why?)

e An efficient implementation of the filter, in combination with the downsampler, is as

follows:

−

z−1

x[n] ↓ M

z−1

y[n]

Prove that this implementation indeed results in the desired response.

f Give an advantage and a disadvantage of this filter, compared to a more general Mth order

FIR filter.

g To obtain a better filter response, we now use two of such filters H(z) in cascade. Draw a

block diagram of an efficient implementation (in combination with the downsampler).

Solution

a Recognize the usual digital sinc function (Dirichlet function). We can write:

H(z) =
1− z−M

1− z−1

H(z) has M zeros, at z = ej
2π

M
k (k = 0, · · · ,M − 1), and a pole at z = 1 which will cancel

the corresponding zero. The first zero is at ω = 2π/M , which corresponds to 100 kHz.

0 pi/4 pi/2 3pi/4 pi
0

5

10

15

20

25

30

35

ω

|H(ω)|
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(Drawn for M = 32)

b A lowpass anti-aliasing filter for the downsampling. Ideally, it cuts off at ω = π/M , the

given non-ideal filter has its 3dB point at this frequency.

c This noise is also filtered, and we will lose a lot of noise (ideally, a fraction 1/M is retained).

Alternatively, we can say that the noise is being averaged (H(z) sums 256 subsequent

samples), this will reduce the variance of the noise by a factor M (assuming the noise is

white).

(Note that in the given situation this assumption is not really valid. Normally, in such

ADCs the difference between two subsequent samples is digitized. That differene has

mean almost equal to zero, so that the quantization noise is much more independent. See:

Sigma-Delta ADC.)

d Initially, the variance of the quantization noise was q2

12 = 2−2B

12 , where B = 4 bits.

Due to the averaging in the filter, the variance is reduced by a factor M : 2−2B

12M . If we

equate this to 2−2B
′

12 , then the new number of bits becomes

2−2B′

12
=

2−2B

12M
⇒ −2B′ = −2B − log2M ⇒ B′ = B +

1

2
log2 M = 4 + 4 = 8

(A Sigma-Delta ADC would be much better at this: 4+12 = 16 bits, because in that case

the quantization noise in the passband is strongly filtered.)

e

H(z) =
1− z−M

1− z−1

An initial realization could be:

−

z−1

x[n] y[n]↓ M

z−M

We can bring the downsampler more to the front, this will replace z−M by z−1. (Cf. “noble

identities”)

(A derivation of H(z) using the formulas for upsampling/downsampling is more tricky,

e.g. because this is not an LTI system: an expression like Y (z) = H(z)X(z) is not valid.)

f +: can be implemented without multipliers and using only 2 delays;

−: not a very good lowpass filter (resulting in aliasing), possibly instable (pole at the unit

circle, it is being canceled later by a zero but care must be taken in the realization).

g An initial realization would be as follows:

y[n]

z−1 z−M z−1 z−M

↓ Mx[n]
− −
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Since convolution is commutative, we can swap the feedforward part with the feedback

part. Next, we can move the downsampler to the left as before:

−

z−1 z−1

↓ M

z−1 z−1

x[n] y[n]
−

This filter has a better lowpass characteristic.
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Table 1. Discrete-Time Fourier transform pairs and properties. (from Signal Processing Sup-

plement of ”probability and stochastic processes”by Yates and Goodman).
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