
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

EE2S11 SIGNALS AND SYSTEMS
Part 2 exam, 30 January 2024, 13:30–15:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic

pocket calculator permitted.

This exam consists of five questions (36 points). Answer in Dutch or English. Make clear in

your answer how you reach the final result; the road to the answer is very important.

Question 1 (10 points)

a) Given the signals x[n] = u[n+ 2]− u[n− 2] , h[n] = [· · · , 0, 1 , −2, 0, 0, · · · ] .

Determine y[n] = x[n] ∗ h[n] using the convolution sum (in time-domain).

b) Given x[n] = u[n]− (1
2)nu[n− 4]. Determine X(z) and also specify the ROC.

c) Given x[n] = anu[n] with |a| < 1. Determine y[n] = x[n] ∗ x[−n]. (Use the z-transform.)

d) Determine, if it exists, the frequency response H(ejω) for the system defined by the differ-

ence equation

y[n] = 1.6y[n− 1]− 0.64y[n− 2] + x[n]− x[n− 2]

e) Given an LTI system with transfer function H(z) = 1− 2z−1.

Determine a (bounded) input signal x[n] for which the output signal is equal to y[n] =

δ[n] + 1
2δ[n− 1].

Solution

a) y[n] =
∑
k

h[k]x[n− k]

h[0]x[n] : · · · 0 1 1 1 1 0 0 0 · · ·
h[1]x[n− 1] : · · · 0 0 −2 −2 −2 −2 0 0 · · ·
y[n] : · · · 0 1 −1 −1 −1 −2 0 0 · · ·

b)

x[n] = u[n]− (
1

2
)4(

1

2
)n−4u[n− 4]

X(z) =
1

1− z−1
−

(1
2)4z−4

1− 1
2z
−1

ROC: {|z| > 1}

c)

x[n] = anu[n] → X(z) =
1

1− az−1
ROC: {|z| > a}

x[−n] = a−nu[−n] → X(z−1) =
1

1− az
ROC: {|z| < 1/a}
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Result of the convolution in z-domain is a product:

Y (z) =
1

1− az−1
· 1

1− az
ROC: {a < |z| < 1/a}

To recover y[n], we need to apply a partial fraction expansion, therefore we first write the

function using polynomials in z or z−1 (but not both). Hence:

Y (z) =
z

(z − a)(1− az)
=

A

z − a
+

B

1− az
= · · · = 1

1− a2

(
a

z − a
+

1

1− az

)
Check the ROC to determine which part is causal and which part is anti-causal. The first

term (with ROC: {|z| > a}) is causal and therefore we write it in terms of z−1. The second

term (with ROC: {|z| < 1/a}) is anti-causal and we keep it in terms of z. This results in:

Y (z) =
1

1− a2

(
az−1

1− az−1
+

1

1− az

)
=

1

1− a2

(
1

1− az−1
− 1 +

1

1− az

)
y[n] =

1

1− a2

(
anu[n]− 1 + a−nu[−n]

)
=

a|n|

1− a2

d) First apply a z-transform:

Y (z)(1− 1.6z−1 + 0.64z−2) = X(z)(1− z−2)

H(z) =
1− z−2

1− 1.6z−1 + 0.64z−2
=

1− z−2

(1− 0.8z−1)2
ROC: |z| > 0.8

The poles are z1,2 = 0.8 (double), the unit circle is in the ROC and the Fourier transform

exists. This results in

H(ejω) =
1− e−2jω

(1− 0.8e−jω)2

e)

Y (z) = 1 +
1

2
z−1

X(z) =
Y (z)

H(z)
=

1 + 1
2z
−1

1− 2z−1

Because we require a bounded x[n], the ROC is {|z| < 2} which gives an anti-causal

sequence. Therefore we rewrite X(z) as

X(z) =
z(1 + 1

2z
−1)

z − 2
= −1

2

1
2 + z

1− 1
2z

= −1

2

(
1

2
+

5

4

z

1− 1
2z

)

x[n] = −1

2

(
1

2
δ[n] +

5

4
(
1

2
)−n−1u[−n− 1]

)
= −1

4
δ[n] +

5

8
(
1

2
)−n−1u[−n− 1]

(This could be written in several equivalent ways, depending on how you rewrite X(z).)

Question 2 (6 points)

The transfer function of a causal LTI system is given by H(z) =
z − 1

z(z + 0.9)

a) Determine all poles and zeros of the system and make a drawing in the complex z-plane.

b) Specify the ROC.

c) Is the system BIBO stable? (Why?)

d) Draw, based on the poles and zeros of H(z), the amplitude response. Is this a low-pass,

high-pass or other kind of filter?
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Solution

a) Poles: z = 0, z = −0.9. Zeros: z = 1, z =∞.

z-plane

1−1

j

−j

b) Causal results in ROC: |z| > 0.9.

c) Unit circle in ROC: BIBO stable.

d)
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0

5
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20

25

ω

|H
(ω

)|

High-pass. Zero at z = 1 results in H(ejω) = 0 for ω = 0. The pole at z = −0.9 results

in a peak for ω = ±π. The pole at z = 0 only has an effect on the phase. Compute:

H(ejπ) = H(1) = 20. (However, the pole-zero plot does not specify the gain so this value

is actually unknown.) The shown plot should be symmetric and either plot from −π to π,

or show periodicity outside this interval.

Question 3 (7 points)

An analog signal xa(t) with Fourier transform Xa(Ω) is band-limited at 10 kHz. The signal is

sampled without aliasing at a sampling frequency Fs, resulting in the discrete-time signal x[n].

The spectrum X(ω) of x[n] is shown below:

−2π

1

X(ω)

− 2
3π

2
3π 2π → ω0

a) What is the relation between Ω and ω?
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b) Which sampling frequency was used?

c) What is the smallest frequency at which we can sample xa(t) without aliasing?

For this case, draw the resulting spectrum (also clearly mark the frequencies).

d) Consider the initial sampling rate. After sampling, xa(t) is reconstructed from x[n] by

means of an ideal D/A convertor and a low-pass filter. Specify the pass-band and stop-

band frequencies of the filter.

Solution

a) ω = ΩTs.

This standard result could be rederived if you recall that ω = 2π ↔ Ω = 2πFs. This

results in Ω = ωFs i.e., ω = ΩTs.

b) ω = 2
3π results in Ω = 2

3πFs. At F = 10 kHz we find

F =
Ω

2π
=

2
3πFs

2π
=

1

3
Fs = 10kHz

hence Fs = 30 kHz.

c) Fs = 20 kHz.

−2π

X(ω)

π → ω−π 2π0

2
3

(To be accurate about the peak amplitude: Note that sampling at Ts will scale the ampli-

tude by 1/Ts = Fs, so if the initial figure was sampled at 30 kHz and the current one at

20 kHz, the peak amplitude will be 2/3.)

d) After D/A conversion, the signal is analog. In the frequency spectrum, the frequency

ωp = 2
3π corresponds to Fp = 10 kHz, and the frequency ωs = 4

3π corresponds to Fstop = 20

kHz. The low-pass filter (in the analog domain! no periodicity) thus has a pass-band

running until 10 kHz and a stop-band starting at 20 kHz.

0−10 10 30 → F [kHz]−30 20−20

Xa(F )

Question 4 (6 points)

Given the realizations:
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z−1

x[n]

y[n]x[n]

y[n]
c0

c1

z−1

z−1

b1

b2

a1 a2

z−1

a) Determine a1, a2 and c0, c1 in terms of b1, b2 such that both systems are equivalent.

b) Are these minimal realizations?

c) Draw the “direct form no. II” realization and also specify the coefficients.

Solution

a) First realization:

H(z) =
1

1− b1z−1
+

1

1− b2z−1
=

2− (b1 + b2)z−1

(1− b1z−1)(1− b2z−1)

Second realization:

H(z) =
1

1− a1z−1
· c0 + c1z

−1

1− a2z−1
=

c0 + c1z
−1

(1− a1z−1)(1− a2z−1)

From this it follows that a1 = b1, a2 = b2, c0 = 2, c1 = −(b0 + b1).

b) Both are minimal because the number of delays in the realization is equal to the filter

order of H(z).

c)

−b1b2

x[n] y[n]
2

b1 + b2 −(b1 + b2)

z−1

z−1

Question 5 (7 points)

A “template” third-order Butterworth filter has the transfer function

H(s) =
1

s3 + 2s2 + 2s+ 1

The corresponding frequency response is |H(jΩ)|2 =
1

1 + Ω6
.
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a) Which frequency transform should we apply to the template to construct a low-pass But-

terworth filter with a 3dB cut-off frequency of Ωc?

b) What is the corresponding transfer function G(s)?

We now design an analog 3rd order low-pass Butterworth filter with a pass-band frequency of 3

rad/s, a stop-band frequency of 6 rad/s and a maximal damping in the pass-band of 0.5 dB.

c) Give a suitable expression for the frequency response (squared-amplitude) of this filter and

determine its parameters.

d) For this filter, what is the minimal damping in the stop-band ?

e) Which transform should be applied to |H(jΩ)|2 to obtain this filter?

Determine the corresponding transfer function.

Solution

a) Substitute Ω→ Ω

Ωc
.

b) Substitute s→ s

Ωc
, this results in

G(s) =
1

( s
Ωc

)3 + 2( s
Ωc

)2 + 2( s
Ωc

) + 1

c) The general expression is

|H(jΩ)|2 =
1

1 + ε2( Ω
Ωp

)6

For Ω = Ωp = 3 we obtain

1

1 + ε2
= 10−0.5/10 ⇒ ε = 0.3493

d) For Ω = Ωs = 6 we obtain

1

1 + ε2(6
3)6

= 0.1135
.
= −9.45 dB

The stopband damping is 9.45 dB.

e) First, we determine Ωc:

(
Ω

Ωc
)6 = ε2

(
Ω

Ωp

)6

⇒ Ωc =
Ωp

ε1/3
= 4.26 rad/s

The transformation is Ω→ Ω
4.26 = 0.235Ω.

The transfer function of the requested Butterworth filter is:

H(s) =
1

( s
4.26)3 + 2( s

4.26)2 + 2( s
4.26) + 1
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