EE2S11 SIGNALS AND SYSTEMS

Part 2 exam, 30 January 2024, 13:30-15:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.
This exam consists of five questions (36 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important.

Question 1 (10 points)

a) Given the signals $x[n]=u[n+2]-u[n-2], \quad h[n]=[\cdots, 0,1,-2,0,0, \cdots]$. Determine $y[n]=x[n] * h[n]$ using the convolution sum (in time-domain).
b) Given $x[n]=u[n]-\left(\frac{1}{2}\right)^{n} u[n-4]$. Determine $X(z)$ and also specify the ROC.
c) Given $x[n]=a^{n} u[n]$ with $|a|<1$. Determine $y[n]=x[n] * x[-n]$. (Use the z-transform.)
d) Determine, if it exists, the frequency response $H\left(e^{j \omega}\right)$ for the system defined by the difference equation

$$
y[n]=1.6 y[n-1]-0.64 y[n-2]+x[n]-x[n-2]
$$

e) Given an LTI system with transfer function $H(z)=1-2 z^{-1}$.

Determine a (bounded) input signal $x[n]$ for which the output signal is equal to $y[n]=$ $\delta[n]+\frac{1}{2} \delta[n-1]$.

Solution

a) $y[n]=\sum_{k} h[k] x[n-k]$
b)

$$
\begin{gathered}
x[n]=u[n]-\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{n-4} u[n-4] \\
X(z)=\frac{1}{1-z^{-1}}-\frac{\left(\frac{1}{2}\right)^{4} z^{-4}}{1-\frac{1}{2} z^{-1}}
\end{gathered}
$$

ROC: $\{|z|>1\}$
c)

$$
\begin{aligned}
& x[n]=a^{n} u[n] \quad \rightarrow \quad X(z)=\frac{1}{1-a z^{-1}} \quad \text { ROC: }\{|z|>a\} \\
& x[-n]=a^{-n} u[-n] \quad \rightarrow \quad X\left(z^{-1}\right)=\frac{1}{1-a z} \quad \text { ROC: }\{|z|<1 / a\}
\end{aligned}
$$

Result of the convolution in z-domain is a product:

$$
Y(z)=\frac{1}{1-a z^{-1}} \cdot \frac{1}{1-a z} \quad \text { ROC: }\{a<|z|<1 / a\}
$$

To recover $y[n]$, we need to apply a partial fraction expansion, therefore we first write the function using polynomials in z or z^{-1} (but not both). Hence:

$$
Y(z)=\frac{z}{(z-a)(1-a z)}=\frac{A}{z-a}+\frac{B}{1-a z}=\cdots=\frac{1}{1-a^{2}}\left(\frac{a}{z-a}+\frac{1}{1-a z}\right)
$$

Check the ROC to determine which part is causal and which part is anti-causal. The first term (with ROC: $\{|z|>a\}$) is causal and therefore we write it in terms of z^{-1}. The second term (with ROC: $\{|z|<1 / a\}$) is anti-causal and we keep it in terms of z. This results in:

$$
\begin{gathered}
Y(z)=\frac{1}{1-a^{2}}\left(\frac{a z^{-1}}{1-a z^{-1}}+\frac{1}{1-a z}\right)=\frac{1}{1-a^{2}}\left(\frac{1}{1-a z^{-1}}-1+\frac{1}{1-a z}\right) \\
y[n]=\frac{1}{1-a^{2}}\left(a^{n} u[n]-1+a^{-n} u[-n]\right)=\frac{a^{|n|}}{1-a^{2}}
\end{gathered}
$$

d) First apply a z-transform:

$$
\begin{gathered}
Y(z)\left(1-1.6 z^{-1}+0.64 z^{-2}\right)=X(z)\left(1-z^{-2}\right) \\
H(z)=\frac{1-z^{-2}}{1-1.6 z^{-1}+0.64 z^{-2}}=\frac{1-z^{-2}}{\left(1-0.8 z^{-1}\right)^{2}} \quad \text { ROC: }|z|>0.8
\end{gathered}
$$

The poles are $z_{1,2}=0.8$ (double), the unit circle is in the ROC and the Fourier transform exists. This results in

$$
H\left(e^{j \omega}\right)=\frac{1-e^{-2 j \omega}}{\left(1-0.8 e^{-j \omega}\right)^{2}}
$$

e)

$$
\begin{gathered}
Y(z)=1+\frac{1}{2} z^{-1} \\
X(z)=\frac{Y(z)}{H(z)}=\frac{1+\frac{1}{2} z^{-1}}{1-2 z^{-1}}
\end{gathered}
$$

Because we require a bounded $x[n]$, the ROC is $\{|z|<2\}$ which gives an anti-causal sequence. Therefore we rewrite $X(z)$ as

$$
\begin{gathered}
X(z)=\frac{z\left(1+\frac{1}{2} z^{-1}\right)}{z-2}=-\frac{1}{2} \frac{\frac{1}{2}+z}{1-\frac{1}{2} z}=-\frac{1}{2}\left(\frac{1}{2}+\frac{5}{4} \frac{z}{1-\frac{1}{2} z}\right) \\
x[n]=-\frac{1}{2}\left(\frac{1}{2} \delta[n]+\frac{5}{4}\left(\frac{1}{2}\right)^{-n-1} u[-n-1]\right)=-\frac{1}{4} \delta[n]+\frac{5}{8}\left(\frac{1}{2}\right)^{-n-1} u[-n-1]
\end{gathered}
$$

(This could be written in several equivalent ways, depending on how you rewrite $X(z)$.)

Question 2 (6 points)

The transfer function of a causal LTI system is given by $H(z)=\frac{z-1}{z(z+0.9)}$
a) Determine all poles and zeros of the system and make a drawing in the complex z-plane.
b) Specify the ROC.
c) Is the system BIBO stable? (Why?)
d) Draw, based on the poles and zeros of $H(z)$, the amplitude response. Is this a low-pass, high-pass or other kind of filter?

Solution

a) Poles: $z=0, z=-0.9$. Zeros: $z=1, z=\infty$.

b) Causal results in ROC: $|z|>0.9$.
c) Unit circle in ROC: BIBO stable.
d)

High-pass. Zero at $z=1$ results in $H\left(e^{j \omega}\right)=0$ for $\omega=0$. The pole at $z=-0.9$ results in a peak for $\omega= \pm \pi$. The pole at $z=0$ only has an effect on the phase. Compute: $H\left(e^{j \pi}\right)=H(1)=20$. (However, the pole-zero plot does not specify the gain so this value is actually unknown.) The shown plot should be symmetric and either plot from $-\pi$ to π, or show periodicity outside this interval.

Question 3 (7 points)

An analog signal $x_{a}(t)$ with Fourier transform $X_{a}(\Omega)$ is band-limited at 10 kHz . The signal is sampled without aliasing at a sampling frequency F_{s}, resulting in the discrete-time signal $x[n]$. The spectrum $X(\omega)$ of $x[n]$ is shown below:

a) What is the relation between Ω and ω ?
b) Which sampling frequency was used?
c) What is the smallest frequency at which we can sample $x_{a}(t)$ without aliasing?

For this case, draw the resulting spectrum (also clearly mark the frequencies).
d) Consider the initial sampling rate. After sampling, $x_{a}(t)$ is reconstructed from $x[n]$ by means of an ideal D/A convertor and a low-pass filter. Specify the pass-band and stopband frequencies of the filter.

Solution

a) $\omega=\Omega T_{s}$.

This standard result could be rederived if you recall that $\omega=2 \pi \quad \leftrightarrow \quad \Omega=2 \pi F_{s}$. This results in $\Omega=\omega F_{s}$ i.e., $\omega=\Omega T_{s}$.
b) $\omega=\frac{2}{3} \pi$ results in $\Omega=\frac{2}{3} \pi F_{s}$. At $F=10 \mathrm{kHz}$ we find

$$
F=\frac{\Omega}{2 \pi}=\frac{\frac{2}{3} \pi F_{s}}{2 \pi}=\frac{1}{3} F_{s}=10 \mathrm{kHz}
$$

hence $F_{s}=30 \mathrm{kHz}$.
c) $F_{s}=20 \mathrm{kHz}$.

(To be accurate about the peak amplitude: Note that sampling at T_{s} will scale the amplitude by $1 / T_{s}=F_{s}$, so if the initial figure was sampled at 30 kHz and the current one at 20 kHz , the peak amplitude will be $2 / 3$.)
d) After D / A conversion, the signal is analog. In the frequency spectrum, the frequency $\omega_{p}=\frac{2}{3} \pi$ corresponds to $F_{p}=10 \mathrm{kHz}$, and the frequency $\omega_{s}=\frac{4}{3} \pi$ corresponds to $F_{\text {stop }}=20$ kHz . The low-pass filter (in the analog domain! no periodicity) thus has a pass-band running until 10 kHz and a stop-band starting at 20 kHz .

Question 4 (6 points)

Given the realizations:

a) Determine a_{1}, a_{2} and c_{0}, c_{1} in terms of b_{1}, b_{2} such that both systems are equivalent.
b) Are these minimal realizations?
c) Draw the "direct form no. II" realization and also specify the coefficients.

Solution

a) First realization:

$$
H(z)=\frac{1}{1-b_{1} z^{-1}}+\frac{1}{1-b_{2} z^{-1}}=\frac{2-\left(b_{1}+b_{2}\right) z^{-1}}{\left(1-b_{1} z^{-1}\right)\left(1-b_{2} z^{-1}\right)}
$$

Second realization:

$$
H(z)=\frac{1}{1-a_{1} z^{-1}} \cdot \frac{c_{0}+c_{1} z^{-1}}{1-a_{2} z^{-1}}=\frac{c_{0}+c_{1} z^{-1}}{\left(1-a_{1} z^{-1}\right)\left(1-a_{2} z^{-1}\right)}
$$

From this it follows that $a_{1}=b_{1}, a_{2}=b_{2}, c_{0}=2, c_{1}=-\left(b_{0}+b_{1}\right)$.
b) Both are minimal because the number of delays in the realization is equal to the filter order of $H(z)$.
c)

Question 5 (7 points)

A "template" third-order Butterworth filter has the transfer function

$$
H(s)=\frac{1}{s^{3}+2 s^{2}+2 s+1}
$$

The corresponding frequency response is $\quad|H(j \Omega)|^{2}=\frac{1}{1+\Omega^{6}}$.
a) Which frequency transform should we apply to the template to construct a low-pass Butterworth filter with a 3 dB cut-off frequency of Ω_{c} ?
b) What is the corresponding transfer function $G(s)$?

We now design an analog 3rd order low-pass Butterworth filter with a pass-band frequency of 3 $\mathrm{rad} / \mathrm{s}$, a stop-band frequency of $6 \mathrm{rad} / \mathrm{s}$ and a maximal damping in the pass-band of 0.5 dB .
c) Give a suitable expression for the frequency response (squared-amplitude) of this filter and determine its parameters.
d) For this filter, what is the minimal damping in the stop-band ?
e) Which transform should be applied to $|H(j \Omega)|^{2}$ to obtain this filter?

Determine the corresponding transfer function.

Solution

a) Substitute $\Omega \rightarrow \frac{\Omega}{\Omega_{c}}$.
b) Substitute $s \rightarrow \frac{s}{\Omega_{c}}$, this results in

$$
G(s)=\frac{1}{\left(\frac{s}{\Omega_{c}}\right)^{3}+2\left(\frac{s}{\Omega_{c}}\right)^{2}+2\left(\frac{s}{\Omega_{c}}\right)+1}
$$

c) The general expression is

$$
|H(j \Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\frac{\Omega}{\Omega_{p}}\right)^{6}}
$$

For $\Omega=\Omega_{p}=3$ we obtain

$$
\frac{1}{1+\epsilon^{2}}=10^{-0.5 / 10} \quad \Rightarrow \quad \epsilon=0.3493
$$

d) For $\Omega=\Omega_{s}=6$ we obtain

$$
\frac{1}{1+\epsilon^{2}\left(\frac{6}{3}\right)^{6}}=0.1135 \doteq-9.45 \mathrm{~dB}
$$

The stopband damping is 9.45 dB .
e) First, we determine Ω_{c} :

$$
\left(\frac{\Omega}{\Omega_{c}}\right)^{6}=\epsilon^{2}\left(\frac{\Omega}{\Omega_{p}}\right)^{6} \Rightarrow \Omega_{c}=\frac{\Omega_{p}}{\epsilon^{1 / 3}}=4.26 \mathrm{rad} / \mathrm{s}
$$

The transformation is $\Omega \rightarrow \frac{\Omega}{4.26}=0.235 \Omega$.
The transfer function of the requested Butterworth filter is:

$$
H(s)=\frac{1}{\left(\frac{s}{4.26}\right)^{3}+2\left(\frac{s}{4.26}\right)^{2}+2\left(\frac{s}{4.26}\right)+1}
$$

