Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Section Signal Processing Systems

EE2S11 SIGNALS AND SYSTEMS

Part 2 exam, 2 February 2023, 13:30-15:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of six questions (34 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important.

Question 1 (4 points)

a) Let $a(t)$ and $b(t)$ be two (possibly complex) signals. Let $A(\Omega)$ be the Fourier transform of $a(t)$, and similar for $B(\Omega)$. Show that

$$
\int_{-\infty}^{\infty} a(t) b^{*}(t) \mathrm{d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} A(\Omega) B^{*}(\Omega) \mathrm{d} \Omega
$$

We call $\int a(t) b^{*}(t) \mathrm{d} t$ the inner product of the two signals. The two signals are called orthogonal if their inner product is zero.
b) Let $s(t)$ be a real-valued signal and let $s^{\prime}(t)$ be its derivative. Show that $s(t)$ is orthogonal to $s^{\prime}(t)$.

Solution

a) Use the Inverse FT to replace $a(t)$, then rearrange the integrals:

$$
\begin{aligned}
\int_{-\infty}^{\infty} a(t) b^{*}(t) \mathrm{d} t & =\frac{1}{2 \pi} \int b^{*}(t) \int A(\Omega) e^{j \Omega t} \mathrm{~d} \Omega \mathrm{~d} t \\
& =\frac{1}{2 \pi} \int A(\Omega)\left[\int b(t) e^{-j \Omega t} \mathrm{~d} t\right]^{*} \mathrm{~d} \Omega \\
& =\frac{1}{2 \pi} \int A(\Omega)[B(\Omega)]^{*} \mathrm{~d} \Omega
\end{aligned}
$$

b) The FT of $s^{\prime}(t)$ is $j \Omega S(\omega)$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} s(t) s^{\prime}(t) \mathrm{d} t & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\Omega)(-j \Omega) S^{*}(\Omega) \mathrm{d} \Omega \\
& =\frac{-j}{2 \pi} \int_{-\infty}^{\infty} \Omega|S(\Omega)|^{2} \mathrm{~d} \Omega \\
& =0
\end{aligned}
$$

using the fact that $|S(\omega)|^{2}$ is an even-valued function for real-valued signals.

Question 2 (7 points)

a) Given the signals $x[n]=\left\{\begin{array}{ll}n, & 0 \leq n \leq 4, \\ 0, & \text { elsewhere }\end{array} \quad\right.$ and $\quad h[n]=[\cdots, 0,2,-1,0,0, \cdots]$. Determine $y[n]=x[n] * h[n]$.
b) Given $X(z)=\frac{3 z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)}, \quad z \in \operatorname{ROC}$.

Determine $x[n]$ using the inverse z-transform if the ROC is $\frac{1}{2}<|z|<2$.
c) Given the DTFT $X\left(e^{j \omega}\right)=e^{-j 2 \omega} \cos ^{2}(\omega)$. Determine $x[n]$.

Hint: you could try to first determine the z-transform.

Solution

a) Compute $y[n]=x[n] * h[n]=\sum_{k=0}^{\infty} h[k] x[n-k]$:
b) First write in terms of z^{-1} (already the case), make 'proper' (already the case), then split (partial fraction expansion):

$$
X(z)=-\frac{2}{1-\frac{1}{2} z^{-1}}+\frac{2}{1-2 z^{-1}}
$$

We have poles at $z=\frac{1}{2}$ and at $z=2$.
For this ROC, rewrite $X(z)$ as

$$
X(z)=-\frac{2}{1-\frac{1}{2} z^{-1}}-\frac{z}{1-\frac{1}{2} z} .
$$

The first term results in a causal response (ROC is $\left\{|z|>\frac{1}{2}\right\}$ and extends until $z \rightarrow \infty$), while the second term results in an anticausal response (ROC is $\{z<2\}$ and includes $z=0)$. The factor z in the second term results in an "advance" $n \rightarrow n+1$. Hence,

$$
x[n]=-2\left(\frac{1}{2}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{-n-1} u[-n-1]
$$

(Note that this series is absolutely summable; consistent with the ROC which encloses the unit circle.)
c) Rewrite (using $z=e^{j \omega}$) as a function of z :

$$
X(z)=z^{-2} \frac{1}{4}\left(z+z^{-1}\right)^{2}=\frac{1}{4}\left(1+2 z^{-2}+z^{-4}\right)
$$

Hence

$$
x[n]=\frac{1}{4}(\delta[n]+2 \delta[n-2]+\delta[n-4])
$$

Question 3 (6 points)

The transfer function of a causal LTI system is given by $H(z)=\frac{z^{2}+2}{z^{2}+\frac{1}{2}}$.
a) Determine all poles and zeros of the system and draw a pole-zero diagram.
b) Specify the ROC.
c) Is the system BIBO stable? (Why?)
d) Determine the amplitude response $\left|H\left(e^{j \omega}\right)\right|^{2}$ of the system.

Solution

a) Zeros for $z= \pm j \sqrt{2}$, poles for $z= \pm j \frac{\sqrt{2}}{2}$.
b) Causal hence the ROC is the outside of a circle; this gives $|z|>\frac{\sqrt{2}}{2}$.
c) Unit circle is in the ROC, hence BIBO stable.
d)

$$
\left|H\left(e^{j \omega}\right)\right|^{2}=\frac{e^{j 2 \omega}+2}{e^{j 2 \omega}+\frac{1}{2}} \cdot \frac{e^{-j 2 \omega}+2}{e^{-j 2 \omega}+\frac{1}{2}}=\frac{5+4 \cos (2 \omega)}{\frac{5}{4}+\cos (2 \omega)}=4
$$

The amplitude response is constant (hence $H(z)$ is an all-pass function).

Question 4 (5 points)

a) Determine the transfer function $H(z)$ of the following system:

b) Is this a minimal realization?
c) Draw the "Direct Form II" realization.

Solution

a) Insert extra parameters at each delay:

$$
\left\{\begin{array}{l}
Y(z)=2 X(z)+Q_{1}(z)+Q_{2}(z) \\
Q_{1}(z)=z^{-1} X(z) \\
Q_{2}(z)=z^{-1}\left(2 X(z)+\frac{1}{2} Y(z)\right)
\end{array}\right.
$$

Substitution results in

$$
Y(z)=X(z) \frac{2+3 z^{-1}}{1-\frac{1}{2} z^{-1}} \quad \Rightarrow \quad H(z)=\frac{2+3 z^{-1}}{1-\frac{1}{2} z^{-1}}
$$

b) Not minimal (2 delays used for a first order system)
c)

Question 5 (6 points)

Given the continuous-time signal $x_{a}(t)=m(t) \cos (1000 t)$.
Here, $m(t)$ is a signal with spectrum $M(\Omega)$ as shown in the figure above, where $\Omega_{m}=200 \mathrm{rad} / \mathrm{s}$ and A is a certain amplitude.

The signal $x_{a}(t)$ is sampled at $\Omega_{s}=1500 \mathrm{rad} / \mathrm{s}$, resulting in a discrete-time signal $x[n]$.
a) Compute the Fourier Transform $X_{a}(\Omega)$ of $x_{a}(t)$. You don't need to expand $M(\Omega)$.
b) Draw the amplitude spectrum $\left|X_{a}(\Omega)\right|$. Accurately indicate the frequencies and amplitudes. Also mark the sample frequency.
c) Do we satisfy the Nyquist criterion?
d) Let $X(\omega)$ denote the DTFT of $x[n]$. What is the relation between ω and Ω ?
e) Make a drawing of the amplitude spectrum $|X(\omega)|$. Accurately indicate the frequencies (also draw the corresponding Ω-axis).

Solution

a) Directly from the table:

$$
X_{a}(\Omega)=\frac{1}{2} M\left(\Omega-\Omega_{0}\right)+\frac{1}{2} M\left(\Omega+\Omega_{0}\right)
$$

with $\Omega_{0}=1000$.
b)

c) No. The highest frequency in the signal is $1200 \mathrm{rad} / \mathrm{s}$ and the sample frequency is less than two times as high.
d) The sample frequency Ω_{s} corresponds to $\omega=2 \pi$, hence $\omega=\frac{2 \pi}{\Omega_{s}} \Omega$.
e) In terms of Ω : the spectrum of X has components at $\Omega=1000$ and -1000 . Because of the sampling, these return at $1000+k \cdot 1500$, e.g. -500 and 2500 , and at $-1000+k \cdot 1500$, e.g. 500 and 2000.

The pink box indicates the fundamental interval (from $-\pi$ until π, outside the spectrum is periodic).

Question 6 (6 points)

We design an analog 3rd order high-pass Chebyshev filter with a stop-band frequency of $5 \mathrm{rad} / \mathrm{s}$, a pass-band frequency of $10 \mathrm{rad} / \mathrm{s}$ and maximal damping in the pass-band of 2 dB .
The amplitude response of a prototype n-th order low-pass Chebyshev filter is given by

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2} T_{n}^{2}(\Omega)}
$$

Also, the 3 rd order Chebyshev polynomial is given by $T_{3}(\Omega)=4 \Omega^{3}-3 \Omega$.
a) We first design a 3 rd order Chebyshev low-pass filter with a pass-band frequency of $1 \mathrm{rad} / \mathrm{s}$ and a maximal damping in the pass-band of 2 dB . Determine all unknown parameters.
b) Which frequency transformation is needed to transform this lowpass filter into the desired high-pass filter?
c) Give the expression for the amplitude response $|G(\Omega)|^{2}$ of the resulting high-pass filter $G(\Omega)$.
d) What is the minimal damping in the stop-band of this high-pass filter?
e) Carefully draw the amplitude response of the high-pass filter; indicate the stop-band and pass-band frequencies, and also denote the corresponding dampings.

Solution

a)

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left[T_{3}(\Omega)\right]^{2}}=\frac{1}{1+\epsilon^{2}\left(4 \Omega^{3}-3 \Omega\right)^{2}} .
$$

The only unknown parameter is ϵ.
For $\Omega=1$ we require a damping of 2 dB , hence $|H(1)|^{2}=10^{-2 / 10}$.

$$
\begin{gathered}
|H(1)|^{2}=\frac{1}{1+\epsilon^{2}}=10^{-2 / 10} \quad \Rightarrow \quad \epsilon=\sqrt{10^{2 / 10}-1}=0.7648 . \\
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(4 \Omega^{3}-3 \Omega\right)^{2}}=\frac{1}{1+(0.5849)\left(4 \Omega^{3}-3 \Omega\right)^{2}} .
\end{gathered}
$$

b) $\Omega \rightarrow \frac{10}{\Omega}$.
c)

$$
|G(\Omega)|^{2}=\frac{1}{1+(0.5849)\left[4\left(\frac{10}{\Omega}\right)^{3}-3\left(\frac{10}{\Omega}\right)\right]^{2}}=\cdots
$$

d) Using $\Omega_{s}=5.0$, we obtain

$$
\left|G\left(\Omega_{s}\right)\right|^{2}=\frac{1}{1+(0.5849)\left(4(2.0)^{3}-3(2.0)\right)^{2}}=0.0025
$$

This corresponds to a damping of 26.0 dB .
e)

The shape of the wiggles is determined from the behavior of $T_{3}(\Omega)$ at the interval $\Omega \in[0,1]$. In particular, $T_{3}(0)=0$, so $|H(0)|^{2}=1$ and then $|G(\infty)|^{2}=1$. There is one other frequency where $T_{3}(\Omega)=0$ and the response becomes 1 . We could also compute that $T_{3}(\Omega)=-1$ for $\Omega=0.5$, so after the transformation, we find that $|G(20)|^{2}=1 /\left(1+\epsilon^{2}\right)$.

