Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Section Signal Processing Systems

EE2S11 SIGNALS AND SYSTEMS

Part 2 exam, 2 February 2023, 13:30-15:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of six questions (34 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important.

Question 1 (4 points)

a) Let $a(t)$ and $b(t)$ be two (possibly complex) signals. Let $A(\Omega)$ be the Fourier transform of $a(t)$, and similar for $B(\Omega)$. Show that

$$
\int_{-\infty}^{\infty} a(t) b^{*}(t) \mathrm{d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} A(\Omega) B^{*}(\Omega) \mathrm{d} \Omega
$$

We call $\int a(t) b^{*}(t) \mathrm{d} t$ the inner product of the two signals. The two signals are called orthogonal if their inner product is zero.
b) Let $s(t)$ be a real-valued signal and let $s^{\prime}(t)$ be its derivative. Show that $s(t)$ is orthogonal to $s^{\prime}(t)$.

Question 2 (7 points)

a) Given the signals $x[n]=\left\{\begin{array}{ll}n, & 0 \leq n \leq 4, \\ 0, & \text { elsewhere }\end{array} \quad\right.$ and $\quad h[n]=[\cdots, 0,2,-1,0,0, \cdots]$. Determine $y[n]=x[n] * h[n]$.
b) Given $X(z)=\frac{3 z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)}, \quad z \in \operatorname{ROC}$.

Determine $x[n]$ using the inverse z-transform if the ROC is $\frac{1}{2}<|z|<2$.
c) Given the DTFT $X\left(e^{j \omega}\right)=e^{-j 2 \omega} \cos ^{2}(\omega)$. Determine $x[n]$. Hint: you could try to first determine the z-transform.

Question 3 (6 points)

The transfer function of a causal LTI system is given by $H(z)=\frac{z^{2}+2}{z^{2}+\frac{1}{2}}$.
a) Determine all poles and zeros of the system and draw a pole-zero diagram.
b) Specify the ROC.
c) Is the system BIBO stable? (Why?)
d) Determine the amplitude response $\left|H\left(e^{j \omega}\right)\right|^{2}$ of the system.

Question 4 (5 points)

a) Determine the transfer function $H(z)$ of the following system:

b) Is this a minimal realization?
c) Draw the "Direct Form II" realization.

Question 5 (6 points)

Given the continuous-time signal $x_{a}(t)=m(t) \cos (1000 t)$.

Here, $m(t)$ is a signal with spectrum $M(\Omega)$ as shown in the figure above, where $\Omega_{m}=200 \mathrm{rad} / \mathrm{s}$ and A is a certain amplitude.

The signal $x_{a}(t)$ is sampled at $\Omega_{s}=1500 \mathrm{rad} / \mathrm{s}$, resulting in a discrete-time signal $x[n]$.
a) Compute the Fourier Transform $X_{a}(\Omega)$ of $x_{a}(t)$. You don't need to expand $M(\Omega)$.
b) Draw the amplitude spectrum $\left|X_{a}(\Omega)\right|$. Accurately indicate the frequencies and amplitudes. Also mark the sample frequency.
c) Do we satisfy the Nyquist criterion?
d) Let $X(\omega)$ denote the DTFT of $x[n]$. What is the relation between ω and Ω ?
e) Make a drawing of the amplitude spectrum $|X(\omega)|$. Accurately indicate the frequencies (also draw the corresponding Ω-axis).

Question 6 (6 points)

We design an analog 3 rd order high-pass Chebyshev filter with a stop-band frequency of $5 \mathrm{rad} / \mathrm{s}$, a pass-band frequency of $10 \mathrm{rad} / \mathrm{s}$ and maximal damping in the pass-band of 2 dB .
The amplitude response of a prototype n-th order low-pass Chebyshev filter is given by

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2} T_{n}^{2}(\Omega)} .
$$

Also, the 3 rd order Chebyshev polynomial is given by $T_{3}(\Omega)=4 \Omega^{3}-3 \Omega$.
a) We first design a 3 rd order Chebyshev low-pass filter with a pass-band frequency of $1 \mathrm{rad} / \mathrm{s}$ and a maximal damping in the pass-band of 2 dB . Determine all unknown parameters.
b) Which frequency transformation is needed to transform this lowpass filter into the desired high-pass filter?
c) Give the expression for the amplitude response $|G(\Omega)|^{2}$ of the resulting high-pass filter $G(\Omega)$.
d) What is the minimal damping in the stop-band of this high-pass filter?
e) Carefully draw the amplitude response of the high-pass filter; indicate the stop-band and pass-band frequencies, and also denote the corresponding dampings.

