Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Part 2 exam, 27 January 2022, 13:30-15:30
Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of five questions (35 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each answer sheet.

Question 1 (9 points)

(a) Let $x[n]=u[n]$, a unit step function, and let $h[n]=[\cdots, 0,0,1,-1,0,0, \cdots]$, where the 'box' denotes the value for $n=0$. Determine the convolution $y[n]=x[n] * h[n]$.
(b) Determine the z-transform for the following discrete-time signal, also specify the ROC:

$$
x[n]=u[n]+\left(\frac{1}{2}\right)^{n} u[n-2] .
$$

(c) Given the transfer function

$$
H(z)=\frac{z^{-1}\left(1-z^{-1}\right)}{1+2 z^{-1}}
$$

Assume the system is stable. Specify the ROC and determine $h[n]$.
(d) Determine the frequency response for $H(z)$ in (c).
(e) The signal $x[n]$ is given by its DTFT (assume that $X(\omega)$ is real-valued):

Determine and draw the DTFT of $y[n]=x[n] \cos \left(\frac{\pi}{4} n\right)$.

Solution

(a) 1.5p Determine the z-transforms:

$$
X(z)=\frac{1}{1-z^{-1}}, \quad \text { and } \quad H(z)=z^{-1}-z^{-2}
$$

Then $Y(z)=H(z) X(z)=z^{-1}$, and $y[n]=\delta[n-1]$.
(b) 2 p First write

$$
x[n]=u[n]+\frac{1}{4}\left(\frac{1}{2}\right)^{n-2} u[n-2] .
$$

Then

$$
X(z)=\frac{1}{1-z^{-1}}+\frac{1}{4} \frac{z^{-2}}{1-\frac{1}{2} z^{-1}}, \quad \operatorname{ROC}:\{|z|>1\}
$$

(c) 3p Poles at $z=-2$ and $z=0$. Stable implies the unit circle is in the ROC: $\{0<|z|<2\}$.

For this ROC, we expect an anti-causal signal. Since $z=0$ is not in the ROC, $h[n]$ could have a finite number of terms in the "causal" part $n>0$.
To determine $h[n]$, it is convenient to split $H(z)$ and rewrite as function of z :

$$
H(z)=\frac{z^{-1}}{1+2 z^{-1}}-\frac{z^{-2}}{1+2 z^{-1}}=\frac{\frac{1}{2}}{1+\frac{1}{2} z}-z^{-1} \frac{\frac{1}{2}}{1+\frac{1}{2} z} .
$$

Then (recalling that multiplication by z^{-1} means $n \rightarrow n-1$)

$$
\begin{aligned}
h[n] & =\frac{1}{2}\left(-\frac{1}{2}\right)^{-n} u[-n]-\frac{1}{2}\left(-\frac{1}{2}\right)^{-(n-1)} u[-(n-1)] \\
& =-\left(-\frac{1}{2}\right)^{-n+1} u[-n]+\left(-\frac{1}{2}\right)^{-n+2} u[-n+1] .
\end{aligned}
$$

This result could be derived or written in several other, equivalent, ways:

$$
\begin{gathered}
H(z)=-\frac{1}{2} z^{-1}+\frac{3}{4} \frac{1}{1+\frac{1}{2} z} \quad \Rightarrow \quad h[n]=-\frac{1}{2} \delta[n-1]+\frac{3}{4}\left(-\frac{1}{2}\right)^{-n} u[-n] \\
H(z)=-\frac{1}{2} z^{-1}\left(2+\frac{-3}{1+\frac{1}{2} z}\right) \quad \Rightarrow \quad h[n]=\delta[n-1]-\frac{3}{2}\left(-\frac{1}{2}\right)^{-(n-1)} u[-(n-1)]
\end{gathered}
$$

(d) 1 p Since it is stable, the unit circle is in the ROC and we can simply substitute $z=e^{j \omega}$:

$$
H\left(e^{j \omega}\right)=\frac{e^{-j \omega}\left(1-e^{-j \omega}\right)}{1+2 e^{-j \omega}} .
$$

This could be simplified a bit by making the denominator real:

$$
H\left(e^{j \omega}\right)=\frac{2-e^{-j \omega}-e^{-2 j \omega}}{5+4 \cos (\omega)}
$$

(e) 1.5p $Y(\omega)=\frac{1}{2} X\left(\omega-\frac{\pi}{4}\right)+\frac{1}{2} X\left(\omega+\frac{\pi}{4}\right)$.

Question 2 (7 points)

Given is the difference equation of a causal system:

$$
y[n]=x[n]+x[n-1]-0.81 y[n-2] .
$$

(a) Determine the corresponding transfer function $H(z)$, also specify the ROC.
(b) Determine the poles and zeros of the transfer function (also those at $z=0$ and $z=\infty$) and draw the corresponding pole-zero plot.
(c) Based on the pole-zero plot, give a sketch of the amplitude spectrum $\left|H\left(e^{j \omega}\right)\right|$.
(d) Is $H(z)$ a stable transfer function? (Why?)

Solution

(a) $2 \mathrm{p} Y(z)=X(z)+z^{-1} X(z)-0.81 z^{-2} Y(z)$, so

$$
H(z)=\frac{1+z^{-1}}{1+0.81 z^{-2}} .
$$

ROC: $\{|z|>0.9\}$.
(b) 2 p Poles at $z= \pm 0.9 j$, a zero at $z=-1$ and a zero at $z=0$.

(c) 2 p

Close to poles ($\omega= \pm \pi / 2$), the response peaks. At $\omega=\pi$, the response is zero because there is a zero at $z=-1$. At $\omega=0(z=1)$, the response is not zero, but not very big either. The zero at $z=0$ only has an effect on the phase. Calculate $H\left(e^{j 0}\right)=2 / 1.81=1.11$.

The spectrum is periodic with period 2π; only one period is plotted.
(d) 1 p Causal system: the ROC is $\{|z|>0.9\}$.

Stable, because the unit circle is in the ROC.

Question 3 (6 points)

A continuous-time signal $x_{a}(t)$ has a Fourier transform $X_{a}(\Omega)=\delta(\Omega+1)+\delta(\Omega-1)$.
(a) Determine $x_{a}(t)$.
(b) What is the largest value of the sampling period T_{s} that would not cause aliasing when sampling $x_{a}(t)$?
(c) We sample the signal at $T_{s}=\pi$. Draw the sampled signal $x[n]$ (also specify the values on the axes).
(d) Determine and draw the corresponding spectrum $X(\omega)$ (also specify the values on the axes).

Solution:

(a) 1.5p Directly from the inverse FT integral:

$$
x_{a}(t)=\frac{1}{2 \pi}\left(e^{j t}+e^{-j t}\right)=\frac{1}{\pi} \cos (t)
$$

(b) 1.5p The signal is bandlimited with bandwidth $\Omega_{\max }=1$, or $F_{\max }=1 /(2 \pi)$. Therefore, we have to sample at Nyquist rate $F_{s}=2 F_{\max }=1 / \pi$. The corresponding sampling period is $T_{s}=\pi$.
(c) 1 p In this case we sample the cos-function exactly at its peaks. Therefore

$$
x[n]=\frac{1}{\pi}(-1)^{n}
$$

(d) 2 p From $x[n]$ we obtain

$$
X(\omega)=2 \sum_{k=-\infty}^{\infty} \delta(\omega-\pi-k 2 \pi)
$$

The spectrum is a spike train with spikes at multiples of $\pm \pi, \pm 3 \pi, \cdots$.

(Only the fundamental period is shown.)

Question 4 (6 points)

Given the realization of a causal system:

(a) Determine the transfer function $H(z)$ of this realization.
(b) Is this a minimal realization? (Why?)
(c) Draw the "direct form no. 2" realization.

Solution

(a) 3p Let $P(z)$ be the signal at the output of the multiplier. Then

$$
\begin{gathered}
\left\{\begin{array} { l }
{ P = \frac { 1 } { 2 } (X + z ^ { - 1 } P) } \\
{ Y = z ^ { - 1 } (X + z ^ { - 1 } P) - P }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
P=\frac{\frac{1}{2}}{1-\frac{1}{2} z^{-1}} X \\
Y=\left(2 z^{-1}-1\right) P
\end{array}\right.\right. \\
H(z)=\frac{z^{-1}-\frac{1}{2}}{1-\frac{1}{2} z^{-1}} .
\end{gathered}
$$

(b) 1 p Not minimal, because two delays are used but the system is of first order.
(c) 2 p

Question 5 (7 points)

A "template" third-order Butterworth filter has the transfer function

$$
H(s)=\frac{1}{s^{3}+2 s^{2}+2 s+1} .
$$

The corresponding amplitude response is $\quad|H(j \Omega)|^{2}=\frac{1}{1+\Omega^{6}}$.
(a) Which frequency transform should we apply to the template to construct a high-pass Butterworth filter with a 3 dB cut-off frequency of Ω_{c} ?
(b) What is the corresponding transfer function $G(s)$?

We aim to design an analog 3rd order high-pass Butterworth filter $G(s)$ with a pass-band frequency of $6 \mathrm{rad} / \mathrm{s}$, a stop-band frequency of $3 \mathrm{rad} / \mathrm{s}$ and a maximal damping in the pass-band of 0.5 dB .
(c) Give a suitable expression for the amplitude response $|G(j \Omega)|^{2}$ of this filter and determine its parameters.
(d) For this filter, what is the minimal damping in the stop-band?
(e) Which transform should be applied to the template $|H(j \Omega)|^{2}$ to obtain this filter?

Using this, determine the transfer function $G(s)$ of the high-pass filter.

Solution

(a) 1 p Substitute $\Omega \rightarrow \frac{\Omega_{c}}{\Omega}$.
(b) 1 p Substitute $s \rightarrow \frac{\Omega_{c}}{s}$ in the expression for $H(s)$, this results in

$$
G(s)=\frac{1}{\left(\frac{\Omega_{c}}{s}\right)^{3}+2\left(\frac{\Omega_{c}}{s}\right)^{2}+2\left(\frac{\Omega_{c}}{s}\right)+1}=\frac{s^{3}}{\Omega_{c}^{3}+2 \Omega_{c}^{2} s+2 \Omega_{c} s^{2}+s^{3}} .
$$

(c) 2 p The general expression is

$$
|G(j \Omega)|^{2}=\frac{1}{1+\epsilon^{2}\left(\frac{\Omega_{p}}{\Omega}\right)^{6}} .
$$

For $\Omega=\Omega_{p}=6$ we obtain

$$
\frac{1}{1+\epsilon^{2}}=10^{-0.5 / 10} \quad \Rightarrow \quad \epsilon=0.3493
$$

(d) 1 p For $\Omega=\Omega_{s}=3$ we obtain

$$
\frac{1}{1+\epsilon^{2}\left(\frac{6}{3}\right)^{6}}=0.1135=-9.45 \mathrm{~dB} .
$$

(e) 2 p First, we determine Ω_{c} by comparing (a) to (c):

$$
\left(\frac{\Omega_{c}}{\Omega}\right)^{6}=\epsilon^{2}\left(\frac{\Omega_{p}}{\Omega}\right)^{6} \Rightarrow \Omega_{c}=\Omega_{p} \epsilon^{1 / 3}=4.23 \mathrm{rad} / \mathrm{s} .
$$

The transfer function of the requested 3rd order Butterworth filter is:

$$
G(s)=\frac{s^{3}}{4.23^{3}+2 s 4.23^{2}+2 s^{2} 4.23+s^{3}} .
$$

