Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Final exam, 29 January 2021, 13:30-15:50
Block 1 (13:30-14:30)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25-14:40

This block consists of three questions (20 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 1 (9 points)

(a) Let $x[n]=[\cdots, 0,1,3,2,0, \cdots]$, where the 'box' denotes the value for $n=0$. Determine the convolution $y[n]=x[n] * x[-n]$.
(b) Let $x[n]=2^{-n-2} u[-n-2]$. Determine the z-transform, also specify the ROC.

Hint: you could first make a plot of $x[n]$.
(c) Let

$$
H(z)=\frac{1-\frac{3}{2} z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-3 z^{-1}\right)} .
$$

Draw a pole-zero plot, and determine $h[n]$ for (c1) ROC: $|z|<\frac{1}{2}$; (c2) ROC: $\frac{1}{2}<|z|<3$; (c3) ROC: $|z|>3$.
(d) Let $x[n]=[\cdots, 0,1,3,1,0, \cdots]$. Determine the DTFT $X\left(e^{j \omega}\right)$, also determine and give plots of the amplitude spectrum and the phase spectrum.

Solution

(a) To avoid confusion, write $r[n]=x[-n]=[\cdots, 0,2,3,1,0, \cdots]$. The convolution is $y[n]=$ $\sum_{k} r[k] x[n-k]$, where $k=-2,-1,0$, hence,

$$
\begin{array}{lll}
k=-2: & 2 \cdot x[n+2]=[\cdots, 0,2,6,4,0,0,0, \cdots] \\
k=-1: & 3 \cdot x[n+1]=[\cdots, 0,0,3,9,6,0,0, \cdots] \\
k=0: & 3 \cdot x[n]= & {[\cdots, 0,0,0,1,3,2,0, \cdots]} \\
\hline & y[n]= & {[\cdots, 0,2,9,14,9,2,0, \cdots]}
\end{array}
$$

(b) The response is anticausal, stops at $n=-2$. Shifting to the origin gives $2^{-n} u[-n]$, we will need to take into account an 'advance' z^{2}.

$$
X(z)=z^{2} \sum_{n=-\infty}^{0}(2 z)^{-n}=z^{2} \sum_{n=0}^{\infty}(2 z)^{n}=\frac{z^{2}}{1-2 z}, \quad \text { ROC }:|z|<\frac{1}{2} .
$$

(c) Make proper and do a partial fraction expansion: write as

$$
H(z)=A+\frac{B}{1-\frac{1}{2} z^{-1}}+\frac{C}{1-3 z^{-1}}
$$

where it follows that $A=-1, B=1, C=1$.
(c1): Anticausal response. Rewrite

$$
\begin{gathered}
H(z)=-1-\frac{2 z}{1-2 z}-\frac{\frac{1}{3} z}{1-\frac{1}{3} z} \\
h[n]=-\delta[n]-2(2)^{-n-1} u[-n-1]-\frac{1}{3}\left(\frac{1}{3}\right)^{-n-1} u[-n-1] \\
=-\delta[n]-2^{-n} u[-n-1]-3^{n} u[-n-1]
\end{gathered}
$$

(c2): Mixed causality response (2nd term causal, 3rd term anticausal):

$$
\begin{gathered}
H(z)=-1+\frac{1}{1-\frac{1}{2} z^{-1}}-\frac{\frac{1}{3} z}{1-\frac{1}{3} z} \\
h[n]=-\delta[n]+\left(\frac{1}{2}\right)^{n} u[n]-\frac{1}{3}\left(\frac{1}{3}\right)^{-n-1} u[-n-1] \\
=- \\
=
\end{gathered}
$$

(c3): Causal response:

$$
\begin{aligned}
& H(z)=-1+\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1-3 z^{-1}} \\
& h[n]=-\delta[n]+\left(\frac{1}{2}\right)^{n} u[n]+3^{n} u[n]
\end{aligned}
$$

In each of the above cases, there are several alternative ways to write the answer.
(d)

$$
X\left(e^{j \omega}\right)=1+3 e^{-j \omega}+e^{-j 2 \omega}=e^{-j \omega}(3+2 \cos (\omega))
$$

Amplitude spectrum: $\left|X\left(e^{j \omega}\right)\right|=3+2 \cos (\omega)$. Phase spectrum: $\angle(\omega)=-\omega$.

Question 2 (5 points)

Consider the pole-zero plot of a discrete-time causal filter with transfer function $H(z)$:

(a) Determine $H(z)$, up to an amplitude scale factor A.
(b) Suppose that we know that $h[0]=2$. Determine A.
(c) Based on the pole-zero locations, contruct a sketch of the magnitude spectrum $\left|H\left(e^{j \omega}\right)\right|$. Clearly indicate relevant values on the ω-axis.
(d) Specify the ROC. Is this a stable filter?

Solution

(a)

$$
H(z)=A \frac{\left(1-j z^{-1}\right)\left(1+j z^{-1}\right)}{\left(1-0 z^{-1}\right)\left(1-0.9 z^{-1}\right)}=A \frac{1+z^{-2}}{1-0.9 z^{-1}}
$$

which is consistent with a pole at zero. Alternatively,

$$
H(z)=A \frac{z^{2}+1}{(z-0.9) z}
$$

(b) initial value theorem:

$$
h[0]=\lim _{z \rightarrow \infty} H(z)=A
$$

Hence $A=2$.
(c) Use phasors. For the amplitude response, the pole at $z=0$ is irrelevant. The pole at $z=1$ gives a large peak at $\omega=0$. The zero locations on the unit circle give zero crossings in the amplitude response. At $z=-1(\omega= \pm \pi)$, the response is low. Calculate: $H(z=1)=A \cdot 2 / 0.1=40 ; H(z=-1)=A \cdot 2 / 1.9 \approx 2.1$. The amplitude response is an even function.

(d) ROC: $|z|>0.9$. Stable, because the unit circle is in the ROC (or: all poles are within the unit circle).

Question 3 (6 points)

A continuous-time signal $x_{a}(t)$ has a spectrum $X_{a}(\Omega)$ as indicated below. It is sampled at the Nyquist rate (resulting in $x[n]$), passed through a lowpass filter with frequency response $H\left(e^{j \omega}\right)$ (resulting in $y[n]$), and reconstructed using an ideal DAC (which includes an ideal interpolation filter). The output signal is $y_{a}(t)$.
The cut-off frequency of the lowpass filter is $\omega_{c}=\Omega_{m} T / 2$, where T is the sample period.

(a) Relate T to Ω_{m}.
(b) Draw the spectra $X(\omega), Y(\omega)$, and $Y_{a}(\Omega)$. Clearly mark the relevant values on the frequency axis.
(c) Suppose now that we sample at twice the Nyquist rate. Again draw the spectra $X(\omega)$, $Y(\omega)$, and $Y_{a}(\Omega)$.

Solution

(a) The signal is sampled at Nyquist. Hence,

$$
F_{s}=\frac{1}{T}=\frac{2 \Omega_{m}}{2 \pi} \quad \Rightarrow \quad T=\frac{\pi}{\Omega_{m}}
$$

(b)

$$
\omega_{c}=\frac{\Omega_{m} T}{2}=\frac{1}{2} \pi
$$

$X(\omega)$ is periodic; note on the frequency axis the relation to $X_{a}(\Omega) . Y(\omega)$ is lowpass filtered but also periodic (the red dashed box indicates the fundamental interval). $Y_{a}(\Omega)$ is not periodic anymore.

$-\Omega_{m}$
$0 \frac{1}{2} \Omega_{m} \Omega_{m} \quad \Omega$
(c) Now, $\omega_{c}=\frac{1}{4} \pi$, but also the mapping $\Omega \rightarrow \omega$ changes:

$-\Omega_{m} \quad 0 \quad \frac{1}{2} \Omega_{m} \Omega_{m}$
Ω

It follows that the analog signal $Y_{a}(\Omega)$ is the same as before.

Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Final exam, 29 January 2021, 13:30-15:50
Block 2 (14:50-15:50)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:45-16:00

This block consists of three questions (20 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 4 (6 points)

Consider the following realization of a causal system:

(a) Determine the transfer function $H(z)$.
(b) What is the difference equation implemented by this realization?
(c) Is this a stable realization? (motivate)
(d) Is this a minimal realization? (motivate)
(e) Draw the "Direct form no. II" realization of the filter and also specify the coefficients.

Solution

(a) Let $P(z)$ be the input of the top delay element, then

$$
\begin{aligned}
& \left\{\begin{array}{r}
P(z)=\frac{1}{2} z^{-2} P(z)+X(z)+2 z^{-1} X(z) \\
Y(z)=5 X(z)+z^{-1} P(z)
\end{array}\right. \\
& \left\{\begin{array}{r}
P(z)=\frac{1+2 z^{-1}}{1-\frac{1}{2} z^{-2}} X(z) \\
Y(z)=\left(5+z^{-1} \frac{1+2 z^{-1}}{1-\frac{1}{2} z^{-2}}\right) X(z)
\end{array}\right. \\
H(z)= & \frac{5\left(1-\frac{1}{2} z^{-2}\right)+z^{-1}\left(1+2 z^{-1}\right)}{1-\frac{1}{2} z^{-2}} \\
= & \frac{5+z^{-1}-\frac{1}{2} z^{-2}}{1-\frac{1}{2} z^{-2}}
\end{aligned}
$$

(b)

$$
y[n]-\frac{1}{2} y[n-2]=5 x[n]+x[n-1]-\frac{1}{2} x[n-2]
$$

(c) Stable, the two poles are $p_{1,2}=1 / \sqrt{2}$, within the unit circle.
(d) Minimal, 2nd order transfer function, and two delays are used.
(e)

Question 5 (9 points)

A normalized second-order analog low-pass filter (Butterworth filter) is given by

$$
H_{a}(s)=\frac{1}{s^{2}+\sqrt{2} s+1}
$$

The $3-\mathrm{dB}$ cutoff frequency for this template is $\Omega_{c}=1 \mathrm{rad} / \mathrm{s}$.
We are asked to design a second-order digital high-pass filter $G(z)$ with
Passband frequency: $\omega_{p}=1 \mathrm{rad}$
Passband damping: 1 dB
Stopband frequency: $\omega_{s}=0.5 \mathrm{rad}$
We will first design an analog 2nd order high-pass filter $G_{a}(s)$ and then apply the bilinear transform.
(a) From the given specifications, what are the passband and stopband frequencies for the analog high-pass filter?
(b) Based on $H_{a}(s)$, what is the corresponding power spectrum $\left|H_{a}(j \Omega)\right|^{2}$?
(c) What frequency transformation is needed to transform $\left|H_{a}(j \Omega)\right|^{2}$ to a template $\left|G_{a}(j \Omega)\right|^{2}$ for the analog 2nd order high-pass filter, which involves design parameters ϵ and Ω_{p} ?
(d) What is the corresponding template high-pass filter $G_{a}(s)$?
(e) Compute the unknown parameters:

What is $\left|G_{a}(j \Omega)\right|^{2}$ and $G_{a}(s)$ that satisfies the specifications?
(f) What is the resulting digital high-pass filter $G(z)$ that satisfies the specifications?
(g) How much damping in the stopband is achieved? (specify in dB)

Solution

(a) $\Omega_{p}=\tan \left(\omega_{p} / 2\right)=0.5463, \Omega_{s}=\tan \left(\omega_{s} / 2\right)=0.2553$.
(b)
$\left|H_{a}(j \Omega)\right|^{2}=\left.H(s) H(-s)\right|_{s=j \Omega}=\frac{1}{-\Omega^{2}+j \sqrt{2} \Omega+1} \cdot \frac{1}{-\Omega^{2}-j \sqrt{2} \Omega+1}=\frac{1}{\left(1-\Omega^{2}\right)^{2}+2 \Omega^{2}}=\frac{1}{1+\Omega^{4}}$
which indeed corresponds to a Butterworth of order 2.
(c) We want to obtain a filter of the form

$$
\left|G_{a}(j \Omega)\right|^{2}=\frac{1}{1+\epsilon^{2}\left(\frac{\Omega_{p}}{\Omega}\right)^{4}}
$$

Comparing to (b), the transformation we need is

$$
\Omega \rightarrow \sqrt{\epsilon} \frac{\Omega_{p}}{\Omega}, \quad s \rightarrow \sqrt{\epsilon} \frac{\Omega_{p}}{s}
$$

(Instead of $\sqrt{\epsilon}$, we could use another scale, e.g. introduce a parameter α, as long as we take that into account into the resulting template for $\left|G_{a}(j \Omega)\right|^{2}$.)
(d) Apply the transformation to $H_{a}(s)$:

$$
G_{a}(s)=\frac{1}{\epsilon \frac{\Omega_{p}^{2}}{s^{2}}+\sqrt{2 \epsilon} \frac{\Omega_{p}}{s}+1}
$$

(e) In the equation for $\left|G_{a}(j \Omega)\right|^{2}$, fill in $\Omega=\Omega_{p}$:

$$
\begin{gathered}
\left|G_{a}\left(j \Omega_{p}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}}=10^{-1 / 10}=0.7943 \\
\epsilon=\sqrt{1 / 0.7943-1}=0.5089
\end{gathered}
$$

Hence

$$
G_{a}(s)=\frac{s^{2}}{0.1519+0.5511 s+s^{2}}
$$

(f) Substitute the bilinear transform,

$$
s \rightarrow \frac{1-z^{-1}}{1+z^{-1}}
$$

resulting in

$$
\begin{aligned}
G(z) & =\frac{\frac{\left(1-z^{-1}\right)^{2}}{\left(1+z^{-1}\right)^{2}}}{0.1519+0.5511 \frac{1-z^{-1}}{1+z^{-1}}+\frac{\left(1-z^{-1}\right)^{2}}{\left(1+z^{-1}\right)^{2}}} \\
& =\frac{\left(1-z^{-1}\right)^{2}}{0.1519\left(1+z^{-1}\right)^{2}+0.5511\left(1-z^{-1}\right)\left(1+z^{-1}\right)+\left(1-z^{-1}\right)^{2}} \\
& =\frac{\left(1-z^{-1}\right)^{2}}{0.1519+2 \cdot 0.1519 z^{-1}+0.1519 z^{-2}+0.5511-0.5511 z^{-2}+1-2 z^{-1}+z^{-2}} \\
& =\frac{\left(1-z^{-1}\right)^{2}}{1.7030-1.6962 z^{-1}+0.6008 z^{-2}}
\end{aligned}
$$

(g) Most reliable/straightforward is to fill in Ω_{s} in the formula for $\left|G_{a}(j \Omega)\right|^{2}$:

$$
\left|G_{a}\left(j \Omega_{s}\right)\right|^{2}=\frac{1}{1+\epsilon^{2}\left(\frac{\Omega_{p}}{\Omega_{s}}\right)^{4}}=\frac{1}{1+(0.5089)^{2}\left(\frac{0.5463}{0.2553}\right)^{4}}=0.1555
$$

Thus, the damping is $10 \log (0.1555)=-8.1 \mathrm{~dB}$.
(You could also take $G(z)$, insert $z=e^{j \omega_{s}}$, and compute the norm of the result. You'll have to deal with complex numbers.)

Question 6 (5 points)

(a) Determine the Fourier transform of

$$
x(t)=\cos \left(\Omega_{0} t\right) \sin \left(\Omega_{1} t\right) .
$$

(b) A periodic signal $x(t)$ has a Fourier series

$$
x(t)=\sum_{k=1}^{\infty} \frac{2}{k^{2}} \cos (3 k t / 2) .
$$

Compute the Fourier transform, $X(\Omega)$.
(c) Use the duality theorem to prove the following Fourier transform result:

$$
x(t)=\frac{1}{t^{2}+a^{2}}, \quad a>0 \quad \leftrightarrow \quad X(\Omega)=\frac{\pi}{a} e^{-a|\Omega|}
$$

Solution

(a) Using the multiplication property,

$$
\begin{aligned}
X(\Omega) & =\frac{\pi^{2}}{2 \pi}\left[\delta\left(\Omega-\Omega_{0}\right)+\delta\left(\Omega+\Omega_{0}\right)\right] *(-j)\left[\delta\left(\Omega-\Omega_{1}\right)-\delta\left(\Omega+\Omega_{1}\right)\right] \\
& =\frac{j \pi}{2}\left[\delta\left(\Omega-\Omega_{0}+\Omega_{1}\right)+\delta\left(\Omega+\Omega_{0}+\Omega_{1}\right)-\delta\left(\Omega-\Omega_{0}-\Omega_{1}\right)-\delta\left(\Omega+\Omega_{0}-\Omega_{1}\right)\right]
\end{aligned}
$$

(b)

$$
X(\Omega)=\pi \sum_{k=1}^{\infty} \frac{2}{k^{2}}[\delta(\Omega-3 k / 2)+\delta(\Omega+3 k / 2]
$$

(c) Start with the LT pairs

$$
\begin{array}{lll}
e^{-a t} u(t) & \leftrightarrow & \frac{1}{s+a} \\
e^{a t} u(-t) & \leftrightarrow & \frac{1}{-s+a} \\
e^{-a|t|} & \leftrightarrow & \frac{1}{s+a}+\frac{1}{-s+a}=\frac{2 a}{a^{2}-s^{2}}
\end{array}
$$

Thus, we have the FT pair $(s=j \Omega)$

$$
y(t)=e^{-a|t|} \quad \leftrightarrow \quad Y(\Omega)=\frac{2 a}{a^{2}+\Omega^{2}}
$$

The duality theorem gives then

$$
Y(t)=\frac{2 a}{a^{2}+t^{2}} \quad \leftrightarrow \quad 2 \pi y(-\Omega)=2 \pi e^{-a|\Omega|}
$$

Finally, by rescaling we obtain then that

$$
\frac{1}{a^{2}+t^{2}} \quad \leftrightarrow \quad \frac{\pi}{a} e^{-a|\Omega|}
$$

