
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Final exam, 29 January 2021, 13:30–15:50

Block 1 (13:30-14:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25–14:40

This block consists of three questions (20 points); more than usual, and this will be taken into

account during grading. Answer in Dutch or English. Make clear in your answer how you reach

the final result; the road to the answer is very important. Write your name and student number

on each sheet.

Question 1 (9 points)

(a) Let x[n] = [· · · , 0, 1 , 3, 2, 0, · · · ], where the ’box’ denotes the value for n = 0. Determine

the convolution y[n] = x[n] ∗ x[−n].

(b) Let x[n] = 2−n−2u[−n− 2]. Determine the z-transform, also specify the ROC.

Hint: you could first make a plot of x[n].

(c) Let

H(z) =
1− 3

2
z−2

(1− 1

2
z−1)(1 − 3z−1)

.

Draw a pole-zero plot, and determine h[n] for (c1) ROC: |z| < 1

2
; (c2) ROC: 1

2
< |z| < 3;

(c3) ROC: |z| > 3.

(d) Let x[n] = [· · · , 0, 1 , 3, 1, 0, · · · ]. Determine the DTFT X(ejω), also determine and give

plots of the amplitude spectrum and the phase spectrum.

Solution

(a) To avoid confusion, write r[n] = x[−n] = [· · · , 0, 2, 3, 1 , 0, · · · ]. The convolution is y[n] =
∑

k r[k]x[n− k], where k = −2,−1, 0, hence,

k = −2 : 2 · x[n+ 2] = [· · · , 0, 2, 6, 4 , 0, 0, 0, · · · ]

k = −1 : 3 · x[n+ 1] = [· · · , 0, 0, 3, 9 , 6, 0, 0, · · · ]

k = 0 : 3 · x[n] = [· · · , 0, 0, 0, 1 , 3, 2, 0, · · · ]

y[n] = [· · · , 0, 2, 9, 14 , 9, 2, 0, · · · ]

(b) The response is anticausal, stops at n = −2. Shifting to the origin gives 2−nu[−n], we will

need to take into account an ’advance’ z2.

X(z) = z2
0

∑

n=−∞

(2z)−n = z2
∞
∑

n=0

(2z)n =
z2

1− 2z
, ROC: |z| <

1

2
.
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(c) Make proper and do a partial fraction expansion: write as

H(z) = A+
B

1− 1

2
z−1

+
C

1− 3z−1

where it follows that A = −1, B = 1, C = 1.

(c1): Anticausal response. Rewrite

H(z) = −1−
2z

1− 2z
−

1

3
z

1− 1

3
z

h[n] = −δ[n]− 2(2)−n−1u[−n− 1]−
1

3

(

1

3

)

−n−1

u[−n− 1]

= −δ[n]− 2−nu[−n− 1]− 3nu[−n− 1]

(c2): Mixed causality response (2nd term causal, 3rd term anticausal):

H(z) = −1 +
1

1− 1

2
z−1

−
1

3
z

1− 1

3
z

h[n] = −δ[n] +

(

1

2

)n

u[n]−
1

3

(

1

3

)

−n−1

u[−n− 1]

= −δ[n] +

(

1

2

)n

u[n]− 3nu[−n− 1]

(c3): Causal response:

H(z) = −1 +
1

1− 1

2
z−1

+
1

1− 3z−1

h[n] = −δ[n] +

(

1

2

)n

u[n] + 3nu[n]

In each of the above cases, there are several alternative ways to write the answer.

(d)

X(ejω) = 1 + 3e−jω + e−j2ω = e−jω(3 + 2 cos(ω))

Amplitude spectrum: |X(ejω)| = 3 + 2 cos(ω). Phase spectrum: ∠(ω) = −ω.

Question 2 (5 points)

Consider the pole-zero plot of a discrete-time causal filter with transfer function H(z):

−j

z-plane

0.9 1

j

(a) Determine H(z), up to an amplitude scale factor A.
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(b) Suppose that we know that h[0] = 2. Determine A.

(c) Based on the pole-zero locations, contruct a sketch of the magnitude spectrum |H(ejω)|.

Clearly indicate relevant values on the ω-axis.

(d) Specify the ROC. Is this a stable filter?

Solution

(a)

H(z) = A
(1− jz−1)(1 + jz−1)

(1− 0 z−1)(1 − 0.9 z−1)
= A

1 + z−2

1− 0.9z−1

which is consistent with a pole at zero. Alternatively,

H(z) = A
z2 + 1

(z − 0.9)z

(b) initial value theorem:

h[0] = lim
z→∞

H(z) = A

Hence A = 2.

(c) Use phasors. For the amplitude response, the pole at z = 0 is irrelevant. The pole

at z = 1 gives a large peak at ω = 0. The zero locations on the unit circle give zero

crossings in the amplitude response. At z = −1 (ω = ±π), the response is low. Calculate:

H(z = 1) = A · 2/0.1 = 40; H(z = −1) = A · 2/1.9 ≈ 2.1. The amplitude response is an

even function.
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(

)|

|H( )|

(d) ROC: |z| > 0.9. Stable, because the unit circle is in the ROC (or: all poles are within the

unit circle).

Question 3 (6 points)

A continuous-time signal xa(t) has a spectrum Xa(Ω) as indicated below. It is sampled at the

Nyquist rate (resulting in x[n]), passed through a lowpass filter with frequency response H(ejω)

(resulting in y[n]), and reconstructed using an ideal DAC (which includes an ideal interpolation

filter). The output signal is ya(t).

The cut-off frequency of the lowpass filter is ωc = ΩmT/2, where T is the sample period.
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reconstrxa(t) ya(t)H(z)
ideal

uctorsampler
ideal

x[n] y[n]

Ω

Xa(Ω)

0−Ωm

ω

H(ejω)

ωc−ωc 0

1

2
Ωm

Ωm

(a) Relate T to Ωm.

(b) Draw the spectra X(ω), Y (ω), and Ya(Ω). Clearly mark the relevant values on the fre-

quency axis.

(c) Suppose now that we sample at twice the Nyquist rate. Again draw the spectra X(ω),

Y (ω), and Ya(Ω).

Solution

(a) The signal is sampled at Nyquist. Hence,

Fs =
1

T
=

2Ωm

2π
⇒ T =

π

Ωm

(b)

ωc =
ΩmT

2
=

1

2
π

X(ω) is periodic; note on the frequency axis the relation to Xa(Ω). Y (ω) is lowpass filtered

but also periodic (the red dashed box indicates the fundamental interval). Ya(Ω) is not

periodic anymore.

π

|X(ω)|

0 ω

Ω−Ωm Ωm0

−π

Ωs

2π−2π

0

|Y (ω)|

−π

−Ωm Ωm

0
1

2
Ωm

1

2
π ω

Ω

2π−2π

|Ya(Ω)|

−Ωm Ωm
1

2
Ωm Ω

(c) Now, ωc =
1

4
π, but also the mapping Ω → ω changes:

0

|Ya(Ω)|

−Ωm Ωm Ω1

2
Ωm

|X(ω)|

−Ωm

0 π−π − 1

2
π

Ωm Ω

ω1

4
π 1

2
π

1

2
Ωm
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It follows that the analog signal Ya(Ω) is the same as before.
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Block 2 (14:50-15:50)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:45–16:00

This block consists of three questions (20 points); more than usual, and this will be taken into

account during grading. Answer in Dutch or English. Make clear in your answer how you reach

the final result; the road to the answer is very important. Write your name and student number

on each sheet.

Question 4 (6 points)

Consider the following realization of a causal system:

z−1

1/2

5

x[n] y[n]

z−1

2

(a) Determine the transfer function H(z).

(b) What is the difference equation implemented by this realization?

(c) Is this a stable realization? (motivate)

(d) Is this a minimal realization? (motivate)

(e) Draw the “Direct form no. II” realization of the filter and also specify the coefficients.
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Solution

(a) Let P (z) be the input of the top delay element, then

{

P (z) = 1
2z

−2P (z) +X(z) + 2z−1X(z)

Y (z) = 5X(z) + z−1P (z)






P (z) = 1+2z−1

1− 1

2
z−2

X(z)

Y (z) =
(

5 + z−1 1+2z−1

1− 1

2
z−2

)

X(z)

H(z) =
5(1 − 1

2z
−2) + z−1(1 + 2z−1)

1− 1
2z

−2

=
5 + z−1 − 1

2z
−2

1− 1
2z

−2

(b)

y[n]−
1

2
y[n− 2] = 5x[n] + x[n− 1]−

1

2
x[n− 2]

(c) Stable, the two poles are p1,2 = 1/
√
2, within the unit circle.

(d) Minimal, 2nd order transfer function, and two delays are used.

(e)

−1/2

x[n] y[n]
5

1/2

1

z−1

z−1

Question 5 (9 points)

A normalized second-order analog low-pass filter (Butterworth filter) is given by

Ha(s) =
1

s2 +
√
2 s+ 1

.

The 3-dB cutoff frequency for this template is Ωc = 1 rad/s.

We are asked to design a second-order digital high-pass filter G(z) with

Passband frequency: ωp = 1 rad

Passband damping: 1 dB

Stopband frequency: ωs = 0.5 rad

We will first design an analog 2nd order high-pass filter Ga(s) and then apply the bilinear

transform.
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(a) From the given specifications, what are the passband and stopband frequencies for the

analog high-pass filter?

(b) Based on Ha(s), what is the corresponding power spectrum |Ha(jΩ)|
2 ?

(c) What frequency transformation is needed to transform |Ha(jΩ)|
2 to a template |Ga(jΩ)|

2

for the analog 2nd order high-pass filter, which involves design parameters ǫ and Ωp ?

(d) What is the corresponding template high-pass filter Ga(s)?

(e) Compute the unknown parameters:

What is |Ga(jΩ)|
2 and Ga(s) that satisfies the specifications?

(f) What is the resulting digital high-pass filter G(z) that satisfies the specifications?

(g) How much damping in the stopband is achieved? (specify in dB)

Solution

(a) Ωp = tan(ωp/2) = 0.5463, Ωs = tan(ωs/2) = 0.2553.

(b)

|Ha(jΩ)|
2 = H(s)H(−s)

∣

∣

s=jΩ
=

1

−Ω2 + j
√
2Ω + 1

·
1

−Ω2 − j
√
2Ω + 1

=
1

(1− Ω2)2 + 2Ω2
=

1

1 + Ω4

which indeed corresponds to a Butterworth of order 2.

(c) We want to obtain a filter of the form

|Ga(jΩ)|
2 =

1

1 + ǫ2
(

Ωp

Ω

)4

Comparing to (b), the transformation we need is

Ω →
√
ǫ
Ωp

Ω
, s →

√
ǫ
Ωp

s

(Instead of
√
ǫ, we could use another scale, e.g. introduce a parameter α, as long as we

take that into account into the resulting template for |Ga(jΩ)|
2.)

(d) Apply the transformation to Ha(s):

Ga(s) =
1

ǫ
Ω2

p

s2
+

√
2ǫ

Ωp

s
+ 1

(e) In the equation for |Ga(jΩ)|
2, fill in Ω = Ωp:

|Ga(jΩp)|
2 =

1

1 + ǫ2
= 10−1/10 = 0.7943

ǫ =
√

1/0.7943 − 1 = 0.5089 .

Hence

Ga(s) =
s2

0.1519 + 0.5511 s + s2
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(f) Substitute the bilinear transform,

s →
1− z−1

1 + z−1

resulting in

G(z) =

(1−z−1)2

(1+z−1)2

0.1519 + 0.5511 1−z−1

1+z−1 + (1−z−1)2

(1+z−1)2

=
(1− z−1)2

0.1519(1 + z−1)2 + 0.5511 (1 − z−1)(1 + z−1) + (1− z−1)2

=
(1− z−1)2

0.1519 + 2 · 0.1519z−1 + 0.1519z−2 + 0.5511 − 0.5511z−2 + 1− 2z−1 + z−2

=
(1− z−1)2

1.7030 − 1.6962z−1 + 0.6008z−2

(g) Most reliable/straightforward is to fill in Ωs in the formula for |Ga(jΩ)|
2:

|Ga(jΩs)|
2 =

1

1 + ǫ2
(

Ωp

Ωs

)4 =
1

1 + (0.5089)2
(

0.5463
0.2553

)4 = 0.1555

Thus, the damping is 10 log(0.1555) = −8.1 dB.

(You could also take G(z), insert z = ejωs , and compute the norm of the result. You’ll

have to deal with complex numbers.)

Question 6 (5 points)

(a) Determine the Fourier transform of

x(t) = cos(Ω0t) sin(Ω1t) .

(b) A periodic signal x(t) has a Fourier series

x(t) =

∞
∑

k=1

2

k2
cos(3kt/2) .

Compute the Fourier transform, X(Ω).

(c) Use the duality theorem to prove the following Fourier transform result:

x(t) =
1

t2 + a2
, a > 0 ↔ X(Ω) =

π

a
e−a|Ω|

Solution

(a) Using the multiplication property,

X(Ω) =
π2

2π

[

δ(Ω − Ω0) + δ(Ω + Ω0)
]

∗ (−j)
[

δ(Ω −Ω1)− δ(Ω + Ω1)
]

=
jπ

2

[

δ(Ω − Ω0 +Ω1) + δ(Ω + Ω0 +Ω1)− δ(Ω − Ω0 − Ω1)− δ(Ω + Ω0 −Ω1)
]

(b)

X(Ω) = π

∞
∑

k=1

2

k2
[δ(Ω − 3k/2) + δ(Ω + 3k/2]
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(c) Start with the LT pairs

e−atu(t) ↔ 1
s+a

eatu(−t) ↔ 1
−s+a

e−a|t| ↔ 1
s+a

+ 1
−s+a

= 2a
a2−s2

Thus, we have the FT pair (s = jΩ)

y(t) = e−a|t| ↔ Y (Ω) =
2a

a2 +Ω2

The duality theorem gives then

Y (t) =
2a

a2 + t2
↔ 2πy(−Ω) = 2πe−a|Ω|

Finally, by rescaling we obtain then that

1

a2 + t2
↔

π

a
e−a|Ω|

5


