Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 13 December 2023, 13:30-15:30
Closed book; two sides of one A4 page with handwritten notes permitted. Graphic calculators not permitted. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.
This exam has four questions (16 points).

Question 1 (5 points)

Given the two signals $h(t)=u(t-1)$ and $x(t)=u(t-2)$, where $u(t)$ is the Heaviside unit step function.
(a) Determine the convolution $y(t)=h(t) * x(t)$ of the signals h and x by directly using the convolution integral.
(b) Determine the convolution $y(t)=h(t) * x(t)$ using the Laplace transform.

Suppose that this $x(t)$ is the input signal of a Linear and Time-Invariant (LTI) system and suppose that $h(t)$ is the impulse response of this system.
(c) Is the input signal $x(t)$ causal? Motivate your answer.
(d) Is the LTI system causal? Motivate your answer.
(e) Is the LTI system BIBO stable? Motivate your answer.

Question 2 (4 points)

(a) Given the signal $f(t)=e^{-t} u(t)$. Determine the two-sided Laplace transform of $\frac{\mathrm{d} f}{\mathrm{~d} t}$ and give its ROC.
(b) Determine the two-sided Laplace transform of the signal $g(t)=\delta(2 t+4)$, where $\delta(t)$ is the Dirac distribution, and give its ROC.
(c) Determine the Laplace transform of the signal $w(t)=\left(t^{2}-2 t+5\right) u(t-1)$ and give its ROC.

Question 3 (3 points)

Determine the inverse Laplace transforms of
(a) $F(s)=\frac{s}{s^{2}-a^{2}}, \quad a>0, \quad \operatorname{Re}(s)>a$.
(b) $G(s)=\frac{3 s-1}{s(s-1)}, \quad \operatorname{Re}(s)>1$.
(c) $W(s)=\frac{6}{s^{2}-6 s+13}, \quad \operatorname{Re}(s)>3$.

Question 4 (4 points)

Given the periodic signal $x(t)$ with fundamental period $T_{0}=2 \pi$ and

$$
x(t)=e^{t}, \quad-\pi<t<\pi .
$$

(a) Determine the power P_{x} of this periodic signal.
(b) Determine the Fourier coefficients X_{k} of this periodic signal.
(c) Show that

$$
\sum_{k=-\infty}^{\infty} \frac{1}{k^{2}+1}=\frac{\pi}{\tanh (\pi)}
$$

