Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 14 December 2022, 13:30-15:30

Closed book; two sides of one A4 page with handwritten notes permitted. Graphic calculators not permitted. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.
This exam has five questions (18 points).

Question 1 (5 points)

A sliding window averager is a system with an input signal $x(t)$ and output signal

$$
y(t)=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} x(\tau) \mathrm{d} \tau
$$

with $T_{1} \geq 0, T_{2} \geq 0$, and $T_{1}+T_{2} \neq 0$.
(a) Show that this system is linear and time invariant (LTI).
(b) Determine the transfer function $H(s)$ of this system.
(c) Determine the impulse response $h(t)$ of this system.
(d) For what value(s) of T_{1} and T_{2} is the system causal? Motivate your answer.

Answer

(a) Apply definitions.
(b)

$$
H(s)=\frac{1}{T_{1}+T_{2}} \frac{1}{s}\left(e^{s T_{2}}-e^{-s T_{1}}\right)
$$

(c)

$$
h(t)=\frac{1}{T_{1}+T_{2}}\left[u\left(t+T_{2}\right)-u\left(t-T_{1}\right)\right]
$$

(d) For $T_{2}=0$ and any $T_{1}>0$.

Question 2 (4 points)

Consider a SISO system with input signal $x(t)$ and output signal $y(t)$. The behavior of the system is described by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}+3 y=x(t) \quad \text { for } t>0^{-}
$$

and the initial condition is $y\left(0^{-}\right)=6$.
Let the input signal be given by $x(t)=\delta(t)$.
(a) Is the output signal $y(t)$ continuous at $t=0$? Motivate your answer without computing $y(t)$ explicitly.
(b) Determine the output signal $y(t)$.
(c) Is the output signal equal to the impulse response $h(t)$ of the system? Motivate your answer.

Now let the input signal be given by $x(t)=12 e^{-2 t}$ for $t>0^{-}$.
(d) Is the output signal $y(t)$ continuous at $t=0$? Motivate your answer without computing $y(t)$ explicitly.
(e) Determine the output signal $y(t)$.

Answer

(a) Right-hand side is a delta function. Left-hand side should have a delta function as well, which means that y must jump at $t=0$. No, not continuous.
(b) $y(t)=7 e^{-3 t} u(t)$. Note that $y\left(0^{+}\right)=7, y\left(0^{-}\right)=6$
(c) No. Initial condition does not vanish.
(d) Yes. If y is discontinuous at $t=0$ then its derivative produces a delta function, but there is no delta function on the right-hand side.
(e) $y(t)=\left(12 e^{-2 t}-6 e^{-3 t}\right) u(t)$. Note that $y\left(0^{+}\right)=y\left(0^{-}\right)=6$.

Question 3 (5 points)

The Laplace-domain signal

$$
X(s)=\frac{s-1}{(s+1)^{2}(s-2)}
$$

can be written in the form

$$
X(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s-2} .
$$

(a) Determine A, B, and C.

Determine the corresponding time-domain signal $x(t)$ in case
(b) $\operatorname{ROC}_{x}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>2\}$.
(c) $\operatorname{ROC}_{x}=\{s \in \mathbb{C} ;-1<\operatorname{Re}(s)<2\}$.
(d) $\operatorname{ROC}_{x}=\{s \in \mathbb{C} ; \operatorname{Re}(s)<-1\}$.

Answer

(a) $A=-1 / 9, B=2 / 3, C=1 / 9$.
(b)

$$
x(t)=\left(-\frac{1}{9} e^{-t}+\frac{2}{3} t e^{-t}+\frac{1}{9} e^{2 t}\right) u(t)
$$

(c)

$$
x(t)=\left(-\frac{1}{9} e^{-t}+\frac{2}{3} t e^{-t}\right) u(t)-\frac{1}{9} e^{2 t} u(-t)
$$

(d)

$$
x(t)=\left(\frac{1}{9} e^{-t}-\frac{2}{3} t e^{-t}-\frac{1}{9} e^{2 t}\right) u(-t)
$$

Question 4 (2 points)

The exponential Fourier series of a periodic signal $x(t)$ of fundamental period T_{0} is given by

$$
x(t)=\sum_{k=-\infty}^{\infty} \frac{3}{4+(k \pi)^{2}} e^{\mathrm{j} k \pi t}
$$

(a) Determine the fundamental period T_{0}.
(b) Determine the average value (dc value) of $x(t)$.
(c) Is $x(t)$ even, odd, or neither? Motivate your answer.
(d) One of the frequency components of $x(t)$ can be expressed as $A \cos (3 \pi t)$. Determine A.

Answer

(a) $T_{0}=2$
(b) Average value $=X_{0}=3 / 4$.
(c) $x(t)$ is even
(d) Relevant frequency component is obtained by adding the $k=-3$ and $k=3$ terms in the Fourier expansion. $A=6 /\left(4+9 \pi^{2}\right)$

Question 5 (2 points)

Suppose you have the Fourier series of two periodic signals $x(t)$ and $y(t)$ of fundamental periods T_{1} and T_{2}, respectively. Let X_{k} and Y_{k} be the Fourier coefficients corresponding to $x(t)$ and $y(t)$.
(a) If $T_{1}=T_{2}$, what are the Fourier coefficients Z_{k} of $z(t)=x(t)+y(t)$ in terms of X_{k} and Y_{k} ?
(b) If $T_{1}=2 T_{2}$, what are the Fourier coefficients Z_{k} of $z(t)=x(t)+y(t)$ in terms of X_{k} and Y_{k} ?

Answer

(a) $Z_{k}=X_{k}+Y_{k}$
(b) $Z_{k}=X_{k}, k$ odd, $Z_{k}=X_{k}+Y_{k / 2}, k$ even.

