Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 8 December 2021, 13:30-15:30
Closed book; two sides of one A4 page with handwritten notes permitted. Graphic calculators not permitted. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.
This exam has three questions (30 points).

Question 1 (8 points)

(a) Given the signal $f(t)=u\left(t^{2}-4 t\right)$, where u is the Heaviside unit step function. The derivative of f is of the form

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=A \delta(t-\alpha)+B \delta(t-\beta)
$$

where A, α, B, and β are constants with $\alpha>\beta$. Determine the constants A, α, B, and β.
(b) Given the signals $v(t)=u(-t)$ and $w(t)=p(t)$, where u is the Heaviside unit step function and p the standard rectangular pulse:

$$
p(t)= \begin{cases}1 & \text { for } 0<t<1 \\ 0 & \text { for } t<0 \text { and } t>1\end{cases}
$$

Determine the signal $z(t)=v(t) * w(t)$ by directly evaluating the convolution integral.

Question 2 (11 points)

(a) The one-sided Laplace transform of a causal signal $f(t)$ is given by

$$
F(s)=\frac{s^{3}+3 s^{2}+s+8}{s^{2}+4 s}, \quad \operatorname{Re}(s)>0
$$

Determine $f(t)$.
(b) The one-sided Laplace transform of the signal

$$
f(t)=\left(1-e^{-t}\right)^{3} u(t)
$$

is of the form

$$
F(s)=\frac{C}{p(s)}, \quad \operatorname{Re}(s)>0
$$

where C is a constant and $p(s)$ a polynomial in s. Determine C and $p(s)$.
(c) The two-sided Laplace transform of a noncausal signal $y(t)$ is given by

$$
Y(s)=\frac{1}{s^{2}}\left(e^{-s}-1\right), \quad \operatorname{Re}(s)<0
$$

Plot $y(t)$.
(d) Determine the two-sided Laplace transform of $g(t)=t^{2}, \quad-\infty<t<\infty$.

Question 3 (11 points)

Given the periodic signal $x(t)$ with fundamental period $T_{0}=\pi$ and

$$
x(t)=\cos (t), \quad 0<t<\pi .
$$

(a) Determine the average value of this signal.
(b) Expand $x(t)$ in a Fourier sine series.
(c) The Fourier coefficients of $x(t)$ decay as $1 / k$ for $k \rightarrow \infty$. Explain why.
(d) The signal $y(t)$ has a fundamental period $T_{0}=2 \pi$ and is given by

$$
y(t)=\operatorname{sign}(t)
$$

on the interval $(-\pi, \pi)$. Use the Fourier series of $y(t)$ to show that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

