Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 7 December 2020, 13:30-15:50
Block 1 (13:30-14:30)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25-14:40

This block consists of three questions (20 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 1 (8 points)

Let $\Lambda(t)$ denote the triangular pulse signal. Furthermore, let $v(t)=\Lambda(2 t)$ and

$$
w(t)=\sum_{k=-\infty}^{\infty} v(t-k) .
$$

(a) Sketch the signals $v(t)$ and $w(t)$.
(b) Compute $\frac{\mathrm{d} w}{\mathrm{~d} t}$ and express this derivative in terms of (time-shifted) step functions.
(c) Is $v(t)$ a finite-energy signal? Motivative your answer.
(d) Is $w(t)$ a finite-energy signal? Motivative your answer.
(e) Is $\frac{\mathrm{d} w}{\mathrm{~d} t}(t)$ a finite-energy signal? Motivative your answer.

Solution

(a) See book, Figure 1.23, page 110.
(b) We have

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=\sum_{k=-\infty}^{\infty} \frac{\mathrm{d} v(t-k)}{\mathrm{d} t}=\sum_{k=-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} t} \Lambda[2(t-k)] \stackrel{p=2(t-k)}{=} \sum_{k=-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} p} \Lambda(p) \frac{\mathrm{d} p}{\mathrm{~d} t}=2 \sum_{k=-\infty}^{\infty} \frac{\mathrm{d} \Lambda(p)}{\mathrm{d} p} .
$$

Since

$$
\frac{\mathrm{d} \Lambda(p)}{\mathrm{d} p}=u(p)-2 u(p-1)+u(p-2)
$$

with u the unit step function, we obtain

$$
\begin{aligned}
\frac{\mathrm{d} w}{\mathrm{~d} t} & =2 \sum_{k=-\infty}^{\infty} u[2(t-k)]-2 u[2(t-k)-1]+u[2(t-k)-2] \\
& =2 \sum_{k=-\infty}^{\infty} u(t-k)-2 u(t-k-1 / 2)+u(t-k-1) .
\end{aligned}
$$

(c) Yes, $v(t)$ is clearly square integrable.
(d) No, $w(t)$ is a periodic signal.
(e) No, $\frac{\mathrm{d} w}{\mathrm{~d} t}$ is a periodic signal.

Question 2 (6 points)

Let $r(t)=t u(t)$ denote the ramp signal and let $w(t)=\cos (t) u(t)$.
(a) Determine the convolution $y(t)=r(t) * w(t)$ directly using the convolution integral.
(b) Determine the convolution $y(t)=r(t) * w(t)$ using the Laplace transform.

Solution

(a) $r(t)$ and $w(t)$ are both causal. Consequently, $y(t)$ is causal as well and we have $y(t)=0$ for $t<0$. For $t>0, y(t)$ is given by

$$
y(t)=\int_{\tau=0}^{t}(t-\tau) \cos (\tau) \mathrm{d} \tau=1-\cos (t) .
$$

In total: $y(t)=[1-\cos (t)] u(t)$.
(b) The Laplace transforms of $r(t)$ and $w(t)$ are given by

$$
R(s)=\frac{1}{s^{2}} \quad \text { and } \quad W(s)=\frac{s}{s^{2}+1},
$$

respectively. Both have the right-half of the complex s-plane $(\operatorname{Re}(s)>0)$ as ROC. The Laplace transform of $y(t)$ is

$$
Y(s)=\frac{1}{s^{2}} \cdot \frac{s}{s^{2}+1}=\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1}, \quad \operatorname{Re}(s)>0 .
$$

Using the table of Laplace transforms, we find $y(t)=[1-\cos (t)] u(t)$.

Question 3 (6 points)

(a) The one-sided Laplace transform of a causal signal $f(t)$ is given by

$$
F(s)=\frac{2(2 s+7)}{(s+4)(s+2)}, \quad \operatorname{Re}(s)>-2 .
$$

Determine $f(t)$.
(b) The one-sided Laplace transform of a causal signal $g(t)$ is given by

$$
G(s)=e^{-2 s} \frac{1}{s^{2}+s-2}, \quad \operatorname{Re}(s)>1 .
$$

Determine $g(t)$.

Solution

(a)

$$
F(s)=\frac{2(2 s+7)}{(s+4)(s+2)}=\frac{1}{s+4}+\frac{3}{s+2}, \quad \operatorname{Re}(s)>-2 .
$$

Using the table of Laplace transforms, we find $f(t)=\left(e^{-4 t}+3 e^{-2 t}\right) u(t)$.
(b)

$$
G(s)=e^{-2 s} \frac{1}{s^{2}+s-2}=e^{-2 s} \frac{1}{3}\left[\frac{1}{s-1}-\frac{1}{s+2}\right], \quad \operatorname{Re}(s)>1 .
$$

Using the table of Laplace transforms, we find $g(t)=\frac{1}{3}\left[e^{t-2}-e^{-2(t-2)}\right] u(t-2)$.

Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 7 December 2020, 13:30-15:50
Block 2 (14:50-15:50)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:45-16:00

This block consists of two questions (19 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 4 (7 points)

(a) The one-sided Laplace transform of a causal signal $w(t)$ is given by

$$
W(s)=\frac{s^{2}+2 k^{2}}{s\left(s^{2}+4 k^{2}\right)}, \quad k>0, \quad \operatorname{Re}(s)>0 .
$$

Determine $w(t)$.
The Laplace transform of the signal

$$
f(t)=\sin (\omega t+\varphi) u(t), \quad \omega>0,
$$

can be written as

$$
F(s)=\frac{\alpha \sin (\varphi)+\beta \cos (\varphi)}{s^{2}+\omega^{2}}
$$

(b) Determine the ROC of $F(s)$.
(c) Determine α and β.

Solution

(a)

$$
W(s)=\frac{s^{2}+2 k^{2}}{s\left(s^{2}+4 k^{2}\right)}=\frac{1}{2}\left(\frac{1}{s}+\frac{s}{s^{2}+4 k^{2}}\right), \quad \operatorname{Re}(s)>0 .
$$

Using the table of Laplace transforms, we find $w(t)=\frac{1}{2}[1+\cos (2 k t)] u(t)=\cos ^{2}(k t) u(t)$.
(b) $\operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}$.
(c) For $\varphi=0$, we have $f(t)=\sin (\omega t) u(t)$. We know that

$$
F(s)=\frac{\omega}{s^{2}+\omega^{2}}=\frac{\beta}{s^{2}+\omega^{2}}
$$

and we obtain $\beta=\omega$. For $\varphi=\pi / 2$, we have $f(t)=\cos (\omega t) u(t)$ and in this case

$$
F(s)=\frac{s}{s^{2}+\omega^{2}}=\frac{\alpha}{s^{2}+\omega^{2}}
$$

from which we obtain $\alpha=s$.

Question 5 (12 points)

On the interval $-\pi \leq t \leq \pi$, a periodic signal $f(t)$ with a fundamental period $T_{0}=2 \pi$ is given by $f(t)=\cos (a t)$, where a is not an integer. Recall that the trigoniometric Fourier expansion of a periodic signal is given by

$$
f(t)=c_{0}+2 \sum_{k=1}^{\infty} c_{k} \cos \left(k \Omega_{0} t\right)+d_{k} \sin \left(k \Omega_{0} t\right)
$$

(a) Determine the dc-component c_{0}.
(b) Show that the Fourier coefficients c_{k} for $k \geq 1$ are given by

$$
c_{k}=\frac{\sin (a \pi)}{\pi}(-1)^{k} \frac{a}{a^{2}-k^{2}}, \quad k \geq 1
$$

Hints:
$\cos (\alpha t) \cos (\beta t)=\frac{1}{2}\{\cos [(\alpha+\beta) t]+\cos [(\alpha-\beta) t]\} \quad$ and $\quad \sin [(k+a) \pi]=(-1)^{k} \sin (a \pi)$.
(c) Determine the Fourier coefficients d_{k}.
(d) Use the Fourier expansion of $f(t)$ to show that

$$
\frac{1}{\sin (z)}=\frac{1}{z}+\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{1}{z-k \pi}+\frac{1}{z+k \pi}\right)
$$

where z is not an integer multiple of π.

Solution

$T_{0}=2 \pi, \Omega_{0}=1$.
(a)

$$
c_{0}=\frac{1}{2 \pi} \int_{t=-\pi}^{\pi} \cos (a t) \mathrm{d} t=\frac{1}{\pi} \int_{t=0}^{\pi} \cos (a t) \mathrm{d} t=\frac{\sin (a \pi)}{a \pi} .
$$

(b)

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi} \int_{t=-\pi}^{\pi} \cos (a t) \cos (k t) \mathrm{d} t \\
& =\frac{1}{\pi} \int_{t=0}^{\pi} \cos (a t) \cos (k t) \mathrm{d} t \\
& =\frac{1}{2 \pi} \int_{t=0}^{\pi} \cos [(k+a) t]+\cos [(k-a) t] \mathrm{d} t \\
& =\frac{1}{2 \pi}\left[\frac{\sin [(k+a) \pi]}{k+a}+\frac{\sin [(k-a) \pi]}{k-a}\right] \\
& =\frac{1}{2 \pi}(-1)^{k} \sin (a \pi)\left(\frac{1}{k+a}-\frac{1}{k-a}\right) \\
& =\frac{\sin (a \pi)}{\pi}(-1)^{k} \frac{a}{a^{2}-k^{2}}
\end{aligned}
$$

(c) The Fourier coefficients $d_{k}=0$, since $f(t)$ is even.
(d) The expansion is

$$
\cos (a t)=\frac{2}{\pi} \sin (a \pi)\left[\frac{1}{2 a}+\sum_{k=1}^{\infty}(-1)^{k} \frac{a \cos (k t)}{a^{2}-k^{2}}\right], \quad-\pi \leq t \leq \pi
$$

For $t=0$ we obtain

$$
1=\frac{2}{\pi} \sin (a \pi)\left[\frac{1}{2 a}+\sum_{k=1}^{\infty}(-1)^{k} \frac{a}{a^{2}-k^{2}}\right],
$$

which can be written as

$$
\frac{1}{\sin (a \pi)}=\frac{1}{a \pi}+\sum_{k=1}^{\infty}(-1)^{k} \frac{2 a \pi}{(a \pi)^{2}-(k \pi)^{2}}=\frac{1}{a \pi}+\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{1}{a \pi-k \pi}+\frac{1}{a \pi+k \pi}\right) .
$$

Set $z=a \pi$ and the result follows.

