Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 7 December 2020, 13:30–15:50 Block 1 (13:30-14:30)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted. Upload answers during 14:25–14:40

This block consists of three questions (20 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 1 (8 points)

Let $\Lambda(t)$ denote the triangular pulse signal. Furthermore, let $v(t) = \Lambda(2t)$ and

$$w(t) = \sum_{k=-\infty}^{\infty} v(t-k).$$

- (a) Sketch the signals v(t) and w(t).
- (b) Compute $\frac{dw}{dt}$ and express this derivative in terms of (time-shifted) step functions.
- (c) Is v(t) a finite-energy signal? Motivative your answer.
- (d) Is w(t) a finite-energy signal? Motivative your answer.
- (e) Is $\frac{dw}{dt}(t)$ a finite-energy signal? Motivative your answer.

Question 2 (6 points)

Let r(t) = t u(t) denote the ramp signal and let $w(t) = \cos(t)u(t)$.

- (a) Determine the convolution y(t) = r(t) * w(t) directly using the convolution integral.
- (b) Determine the convolution y(t) = r(t) * w(t) using the Laplace transform.

Question 3 (6 points)

(a) The one-sided Laplace transform of a causal signal f(t) is given by

$$F(s) = \frac{2(2s+7)}{(s+4)(s+2)}, \qquad \text{Re}(s) > -2.$$

Determine f(t).

(b) The one-sided Laplace transform of a causal signal g(t) is given by

$$G(s) = e^{-2s} \frac{1}{s^2 + s - 2}, \qquad \operatorname{Re}(s) > 1.$$

Determine g(t).

Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science Circuits and Systems Group

EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 7 December 2020, 13:30–15:50 Block 2 (14:50-15:50)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted. Upload answers during 15:45–16:00

This block consists of two questions (19 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 4 (7 points)

(a) The one-sided Laplace transform of a causal signal w(t) is given by

$$W(s) = \frac{s^2 + 2k^2}{s(s^2 + 4k^2)}, \quad k > 0, \quad \operatorname{Re}(s) > 0.$$

Determine w(t).

The Laplace transform of the signal

$$f(t) = \sin(\omega t + \varphi)u(t), \quad \omega > 0,$$

can be written as

$$F(s) = \frac{\alpha \sin(\varphi) + \beta \cos(\varphi)}{s^2 + \omega^2}.$$

- (b) Determine the ROC of F(s).
- (c) Determine α and β .

Question 5 (12 points)

On the interval $-\pi \leq t \leq \pi$, a periodic signal f(t) with a fundamental period $T_0 = 2\pi$ is given by $f(t) = \cos(at)$, where a is **not** an integer. Recall that the trigoniometric Fourier expansion of a periodic signal is given by

$$f(t) = c_0 + 2\sum_{k=1}^{\infty} c_k \cos(k\Omega_0 t) + d_k \sin(k\Omega_0 t).$$

(a) Determine the dc-component c_0 .

(b) Show that the Fourier coefficients c_k for $k \ge 1$ are given by

$$c_k = \frac{\sin(a\pi)}{\pi} (-1)^k \frac{a}{a^2 - k^2}, \qquad k \ge 1.$$

Hints:

$$\cos(\alpha t)\cos(\beta t) = \frac{1}{2} \left\{ \cos[(\alpha + \beta)t] + \cos[(\alpha - \beta)t] \right\} \text{ and } \sin[(k + a)\pi] = (-1)^k \sin(a\pi).$$

- (c) Determine the Fourier coefficients d_k .
- (d) Use the Fourier expansion of f(t) to show that

$$\frac{1}{\sin(z)} = \frac{1}{z} + \sum_{k=1}^{\infty} (-1)^k \left(\frac{1}{z - k\pi} + \frac{1}{z + k\pi} \right),$$

where z is not an integer multiple of π .