Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

## EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 7 December 2020, 13:30-15:50
Block 1 (13:30-14:30)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:25-14:40

This block consists of three questions ( 20 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

## Question 1 (8 points)

Let $\Lambda(t)$ denote the triangular pulse signal. Furthermore, let $v(t)=\Lambda(2 t)$ and

$$
w(t)=\sum_{k=-\infty}^{\infty} v(t-k) .
$$

(a) Sketch the signals $v(t)$ and $w(t)$.
(b) Compute $\frac{\mathrm{d} w}{\mathrm{~d} t}$ and express this derivative in terms of (time-shifted) step functions.
(c) Is $v(t)$ a finite-energy signal? Motivative your answer.
(d) Is $w(t)$ a finite-energy signal? Motivative your answer.
(e) Is $\frac{\mathrm{d} w}{\mathrm{~d} t}(t)$ a finite-energy signal? Motivative your answer.

## Question 2 (6 points)

Let $r(t)=t u(t)$ denote the ramp signal and let $w(t)=\cos (t) u(t)$.
(a) Determine the convolution $y(t)=r(t) * w(t)$ directly using the convolution integral.
(b) Determine the convolution $y(t)=r(t) * w(t)$ using the Laplace transform.

## Question 3 (6 points)

(a) The one-sided Laplace transform of a causal signal $f(t)$ is given by

$$
F(s)=\frac{2(2 s+7)}{(s+4)(s+2)}, \quad \operatorname{Re}(s)>-2 .
$$

Determine $f(t)$.
(b) The one-sided Laplace transform of a causal signal $g(t)$ is given by

$$
G(s)=e^{-2 s} \frac{1}{s^{2}+s-2}, \quad \operatorname{Re}(s)>1 .
$$

Determine $g(t)$.

Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

## EE2S11 SIGNALS AND SYSTEMS

Midterm exam, 7 December 2020, 13:30-15:50
Block 2 (14:50-15:50)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 15:45-16:00

This block consists of two questions (19 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

## Question 4 ( 7 points)

(a) The one-sided Laplace transform of a causal signal $w(t)$ is given by

$$
W(s)=\frac{s^{2}+2 k^{2}}{s\left(s^{2}+4 k^{2}\right)}, \quad k>0, \quad \operatorname{Re}(s)>0
$$

Determine $w(t)$.
The Laplace transform of the signal

$$
f(t)=\sin (\omega t+\varphi) u(t), \quad \omega>0,
$$

can be written as

$$
F(s)=\frac{\alpha \sin (\varphi)+\beta \cos (\varphi)}{s^{2}+\omega^{2}}
$$

(b) Determine the ROC of $F(s)$.
(c) Determine $\alpha$ and $\beta$.

## Question 5 (12 points)

On the interval $-\pi \leq t \leq \pi$, a periodic signal $f(t)$ with a fundamental period $T_{0}=2 \pi$ is given by $f(t)=\cos (a t)$, where $a$ is not an integer. Recall that the trigoniometric Fourier expansion of a periodic signal is given by

$$
f(t)=c_{0}+2 \sum_{k=1}^{\infty} c_{k} \cos \left(k \Omega_{0} t\right)+d_{k} \sin \left(k \Omega_{0} t\right)
$$

(a) Determine the dc-component $c_{0}$.
(b) Show that the Fourier coefficients $c_{k}$ for $k \geq 1$ are given by

$$
c_{k}=\frac{\sin (a \pi)}{\pi}(-1)^{k} \frac{a}{a^{2}-k^{2}}, \quad k \geq 1 .
$$

Hints:
$\cos (\alpha t) \cos (\beta t)=\frac{1}{2}\{\cos [(\alpha+\beta) t]+\cos [(\alpha-\beta) t]\} \quad$ and $\quad \sin [(k+a) \pi]=(-1)^{k} \sin (a \pi)$.
(c) Determine the Fourier coefficients $d_{k}$.
(d) Use the Fourier expansion of $f(t)$ to show that

$$
\frac{1}{\sin (z)}=\frac{1}{z}+\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{1}{z-k \pi}+\frac{1}{z+k \pi}\right),
$$

where $z$ is not an integer multiple of $\pi$.

