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EE2S11 SIGNALS AND SYSTEMS
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Closed book; two sides of one A4 page with handwritten notes permitted. Graphic

calculators not permitted.

This exam has four questions (38 points)

Question 1 (10 points)

Evaluate the following integrals:

a)
∫ 4

t=−4
t2 [δ(t+ 2) + δ(t) + δ(t− 5)] dt

b)
∫ 4

t=−4
(t2 + 2) [δ(t) + 3δ(t− 2)] dt

c)
∫ 4

t=−4
t2δ′(t− 2) dt

The signal y(t) satisfies the differential equation

4y′(t) + 8y(t) = 12δ(t) , with y(0−) = 0 .

d) Determine y(0+).

e) Find a signal z(t) such that z(t) = 0 for t < 0 and z′(t) = 12δ(t)− 24e−2tu(t).

Solution

a) 4, note that t = 5 does not belong to the integration interval.

b) 20

c) −4

d) y(0+) = 3

e) z(t) = 12e−2tu(t)

Question 2 (8 points)

The action of an LTI system with an input signal x(t) and output signal y(t) is described by

the differential equation

y′′(t) + 4y′(t) + 13y(t) = x(t) for t > 0−

with initial conditions y(0−) = 4 and y′(0−) = 4.

a) Determine the impulse response h(t) of the system.

The zero-input response yzi(t) of the system can be written as

yzi(t) = Ae−αt cos(ωt+ ϕ)u(t).

b) Determine A, α, ω, and ϕ.
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Solution

a) To determine the impulse response, take x(t) = δ(t) and set the initial conditions to zero.

A one-sided Laplace transform gives the transfer function

H(s) =
1

s2 + 4s+ 13
=

1

3

3

(s+ 2)2 + 32
.

The inverse Laplace transform of this transfer function is

h(t) =
1

3
e−2t sin(3t)u(t).

b) Set the input signal to zero x(t) = 0, apply the one-sided Laplace transform to the diffe-

rential equation, and take the initial conditions into account to obtain

Yzi(s) =
4s+ 20

s2 + 4s+ 13
=

C

s+ 2− 3j
+

C∗

s+ 2 + 3j

with C = 2(1− j) = 2
√

2e−jπ/4. An inverse Laplace transform now gives

yzi(t) = 2
√

2e−2t
[
ej(3t−π/4) + e−j(3t−π/4)

]
u(t)

= 4
√

2e−2t cos(3t− π/4)u(t).

We find that A = 4
√

2, α = 2, ω = 3, and ϕ = −π/4.

Question 3 (10 points)

Consider the real-valued continuous-time periodic signal x(t) depicted below:

0

x(t)

t

1

2⇡⇡�⇡

The Fourier series expansion of x(t) is given by

x(t) =
∞∑

k=−∞
Xke

jkΩ0t, t ∈ [t0, t0 + T0), Xk =
1

T0

∫ t0+T0

t0

x(t)e−jkΩ0tdt, k ∈ Z. (1)

a) Without explicitly computing the Fourier series, what can you say about the spectrum of

x(t): Is it discrete or continuous, is it real, imaginary of complex-valued, and do we have

symmetry in the spectrum? Motivate your answer.

b) Compute the Fourier series expansion of x(t) using (1).

c) Compute the Fourier coefficients using the Laplace transform.

d) Give a sketch of the magnitude and phase spectrum of x(t).

Assume the signal x(t) is the input of an LTI system of which the output is y(t) = π
dx(t)

dt
.

e) Compute the Fourier series expansion of y(t).

f) What is the order of decay of both spectra? Explain which one decays fastest and why.
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Solution

a) Since x is a periodic signals, the spectrum is a line spectrum. Moreover, since x is even

symmetric, the spectrum is real and since x is real valued, the spectrum is conjugate

symmetric. That is, the magnitude spectrum is even symmetric and the phase spectrum

is odd symmetric.

b) Since x is even symmetric, we have (Ω0 = 1)∫ π

−π
x(t)e−jktdt =

∫ π

−π
x(t)(cos(kt)− j sin(kt))dt =

∫ π

−π
x(t) cos(kt)dt.

Hence,

Xk =
1

π

∫ π

0
(1− t

π
) cos(kt)dt =

1

π

∫ π

0
cos(kt)dt︸ ︷︷ ︸
I

− 1

π

∫ π

0

t

π
cos(kt))dt︸ ︷︷ ︸
II

.

k 6= 0:

I :

1

π

∫ π

0
cos(kt)dt = − 1

πk
sin(kt)

∣∣∣∣π
0

= 0.

II :
− 1

π2

∫ π

0
t cos(kt)dt =

1

π2k
t sin(kt)

∣∣∣∣π
0

− 1

π2k

∫ π

0
sin(kt)dt

= 0− 1

(πk)2
cos(kt)

∣∣∣∣π
0

=
1

(πk)2
(
(

1− (−1)k
)
.

k = 0:

I :

1

π

∫ π

0
dt = 1.

II :
− 1

π2

∫ π

0
tdt = − 1

2π2
t2
∣∣∣∣π
0

= −1

2
,

so that X0 = 1
2 . Note that Xk is indeed real.

c) We have that x(t) = 1
π r(t+π)− 2

π r(t) + 1
π r(t−π). Applying the Laplace transform yields

X(s) =
1

πs2

(
esπ + e−sπ − 2

)
.

so that the Fourier coefficients are given by (k 6= 0),

Xk =
1

2π
X(s)

∣∣∣∣
s=jk

=
−1

2(πk)2

(
ejkπ + e−jkπ − 2

)
=

1

(πk)2
(
(

1− (−1)k
)
.

For k = 0 we note that lims→0X(s) = π, so that X0 = 1
2 .

d) The magnitude and phase spectrum |Xk| and ∠Xk are:

0

0
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e) Since y(t) = π dx(t)
dt , we have

Yk = jkπXk =

 0, k even,

2j
πk , k odd.

f) The decay of Xk is O(1/k2) since x has is continuous but not continuously differentiable.

The decay of Yk is slower (O(1/k)) since y has discontinuities (square wave).

Question 4 (10 points)

Consider the RLC circuit depicted below:

Let HL(s) denote the the transfer function of the (input) voltage source to the (output) voltage

across the inductor,

HL(s) =
VL(s)

Vi(s)
, s ∈ ROC.

a) Give an expression for HL(s) in terms of R,L and C.

For simplicity, now assume that R = L = C = 1.

b) Determine the poles and zeros of the system and draw them in the complex s-plane.

Is the system BIBO stable? Motivate your answer.

c) Give an expression for the frequency, magnitude and phase response of the system.

d) Sketch the magnitude and phase response and indicate the values of |HL(jΩ)| and ∠HL(jΩ)

for the (angular) frequencies Ω = 0 and Ω = ±∞.

e) Suppose we consider the transfer to the output across the resistor or capacitor, given by

HR(s) and HC(s), respectively. Argue whether the corresponding frequency responses are

low-, band- or highpass. Motivate your answer by considering the pole-zero locations of

the transfer functions, and indicate how they differ from the pole-zero locations of HL(s).

Solution

a) We have

HL(s) =
s2LC

s2LC + sRC + 1
.
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b)

H(s) =
s2

s2 + s+ 1
=

s2

(s+ 1
2(1− j

√
3))(s+ 1

2(1 + j
√

3))
.

Hence, we have two zero at s = 0 and two poles at s = −1
2 ± j

1
2

√
3. The causal system is

BIBO stable since all poles lie in the left-hand plane.

Re(s)

Im(s)

b) The frequency response is given by

H(Ω) = H(s)

∣∣∣∣
s=jΩ

=
−Ω2

1− Ω2 + jΩ
.

Hence, the magnitude response is given by

|H(Ω)| = Ω2√
(1− Ω2)2 + Ω2

and the phase response by

∠H(Ω) = π − tan−1

(
Ω

1− Ω2

)
.

c) We have |H(0)| = 0 and |H(±∞)| = 1, Since we have two zeros at s = 0, we get a jump of

2π radians at Ω = 0. Hence, ∠H(0+) = π and ∠H(0−) = −π. Moreover, ∠H(±∞) = 0.

d) The transfer function HR and HC are given by

HR(s) =
s

s2 + s+ 1
, HC(s) =

1

s2 + s+ 1
.
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They differ from HL is the number of zeros (at s = 0). Hence, removing one zero from

HL(s) will result in a band-pass filter, since there is still one zero left at s = 0 but

|HR(±∞| = 0. If we remove both zeros, we obtain a low-pass filter since in that case

|H(0)| = 1 and certainly |HR(±∞| = 0.
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