EE2S11 SIGNALS AND SYSTEMS

Part 1, 13 December 2018, 13:30-15:30
Closed book; two sides of one A4 page with handwritten notes permitted. Graphic calculators not permitted.

This exam has four questions (38 points)

Question 1 (10 points)

Evaluate the following integrals:
a)

$$
\int_{t=-4}^{4} t^{2}[\delta(t+2)+\delta(t)+\delta(t-5)] \mathrm{d} t
$$

b)

$$
\int_{t=-4}^{4}\left(t^{2}+2\right)[\delta(t)+3 \delta(t-2)] d t
$$

c)

$$
\int_{t=-4}^{4} t^{2} \delta^{\prime}(t-2) \mathrm{d} t
$$

The signal $y(t)$ satisfies the differential equation

$$
4 y^{\prime}(t)+8 y(t)=12 \delta(t), \quad \text { with } y\left(0^{-}\right)=0 .
$$

d) Determine $y\left(0^{+}\right)$.
e) Find a signal $z(t)$ such that $z(t)=0$ for $t<0$ and $z^{\prime}(t)=12 \delta(t)-24 e^{-2 t} u(t)$.

Question 2 (8 points)

The action of an LTI system with an input signal $x(t)$ and output signal $y(t)$ is described by the differential equation

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+13 y(t)=x(t) \quad \text { for } t>0^{-}
$$

with initial conditions $y\left(0^{-}\right)=4$ and $y^{\prime}\left(0^{-}\right)=4$.
a) Determine the impulse response $h(t)$ of the system.

The zero-input response $y_{\mathrm{zi}}(t)$ of the system can be written as

$$
y_{\mathrm{zi}}(t)=A e^{-\alpha t} \cos (\omega t+\varphi) u(t) .
$$

b) Determine A, α, ω, and φ.

Question 3 (10 points)

Consider the real-valued continuous-time periodic signal $x(t)$ depicted below:

The Fourier series expansion of $x(t)$ is given by

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}, \quad t \in\left[t_{0}, t_{0}+T_{0}\right), \quad X_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-j k \Omega_{0} t} d t, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

a) Without explicitly computing the Fourier series, what can you say about the spectrum of $x(t)$: Is it discrete or continuous, is it real, imaginary of complex-valued, and do we have symmetry in the spectrum? Motivate your answer.
b) Compute the Fourier series expansion of $x(t)$ using (1).
c) Compute the Fourier coefficients using the Laplace transform.
d) Give a sketch of the magnitude and phase spectrum of $x(t)$.

Assume the signal $x(t)$ is the input of an LTI system of which the output is $y(t)=\pi \frac{d x(t)}{d t}$.
e) Compute the Fourier series expansion of $y(t)$.
f) What is the order of decay of both spectra? Explain which one decays fastest and why.

Question 4 (10 points)

Consider the RLC circuit depicted below:

Let $H_{L}(s)$ denote the the transfer function of the (input) voltage source to the (output) voltage across the inductor,

$$
H_{L}(s)=\frac{V_{L}(s)}{V_{i}(s)}, \quad s \in \mathrm{ROC}
$$

a) Give an expression for $H_{L}(s)$ in terms of R, L and C.

For simplicity, now assume that $R=L=C=1$.
b) Determine the poles and zeros of the system and draw them in the complex s-plane. Is the system BIBO stable? Motivate your answer.
c) Give an expression for the frequency, magnitude and phase response of the system.
d) Sketch the magnitude and phase response and indicate the values of $\left|H_{L}(j \Omega)\right|$ and $\angle H_{L}(j \Omega)$ for the (angular) frequencies $\Omega=0$ and $\Omega= \pm \infty$.
e) Suppose we consider the transfer to the output across the resistor or capacitor, given by $H_{R}(s)$ and $H_{C}(s)$, respectively. Argue whether the corresponding frequency responses are low-, band- or highpass. Motivate your answer by considering the pole-zero locations of the transfer functions, and indicate how they differ from the pole-zero locations of $H_{L}(s)$.

