EE2S11 SIGNALS AND SYSTEMS

Resit exam, 10 July 2023, 13:30-16:30
Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of seven questions (31 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each answer sheet.

Question 1 (4 points)

Determine the one-sided Laplace transform of the following signals and specify their ROC as well. Note: $u(t)$ denotes the Heaviside unit step function.
(a) $f(t)=\delta(2 t)$
(b) $g(t)=t u(t)$
(c) $m(t)=(t-1) u(t-1)$
(d) $n(t)=(t-1) u(t)$

Question 2 (4 points)

Find the inverse Laplace transform of the following signals:
(a) $F(s)=\frac{4 s+20}{s^{2}+4 s+13}, \quad \operatorname{Re}(s)>-2$.
(b) $G(s)=\frac{1}{\left(s^{2}+4\right)\left(s^{2}+9\right)}, \quad \operatorname{Re}(s)>0$.

Question 3 (6 points)

Let $x(t)$ be a periodic signal with period $T_{0}=1$. A single period of $x(t)$ is denoted by $x_{1}(t)$ and is given by

$$
x_{1}(t)= \begin{cases}\sin (2 \pi t) & 0 \leq t \leq 0.5 \\ 0 & 0.5<t \leq 1\end{cases}
$$

(a) Determine the one-sided Laplace transform of $x_{1}(t)$ and its ROC.
(b) Determine the DC component of the periodic signal $x(t)$.
(c) Determine the Fourier coefficient X_{1} of the periodic signal $x(t)$.
(d) Determine the Fourier coefficients X_{k} for k even and $k \geq 2$.
(e) Determine the Fourier coefficients X_{k} for k odd and $k \geq 2$.

Question 4 (6 points)

(a) Given the signal $x[n]=[\cdots, 0, \boxed{3}, 2,1,0,0, \cdots]$, where the 'box' denotes the value for $n=0$. Determine $r[n]=x[n] * x[-n]$ using the convolution sum.

Determine the z-transform for the following discrete-time signal, and specify also the ROC:
(b) $x[n]=(2)^{n} u[-n]$,

Determine the signal $x[n]$ corresponding to the following z-transform:
(c) $X(z)=\frac{2 z^{2}}{(z-1)(z-2)}, \quad \mathrm{ROC}=\{1<|z|<2\}$.

The signal $x[n]$ is specified by its DTFT (here we assume that $X(\omega)$ is real-valued):

(d) Determine and draw the DTFT of $x_{1}[n]=x[n] \cos (\pi n / 4)$.

Note: specify the DTFT in terms of $X(\omega)$.

Question 5 (3 points)

A continuous-time signal $x_{a}(t)$ has frequencies in the range 30 until 40 Hz . The signal is sampled with period T so that we obtain a time series $x[n]=x_{a}(n T)$.
The amplitude spectrum of $x_{a}(t)$ appears as follows:

(a) What is the Nyquist frequency at which we would have to sample to avoid any aliasing?
(b) We sample the signal at 40 Hz . Make a drawing of the amplitude-spectrum $|X(\omega)|$ resulting from this sample frequency. Also mark the frequencies.

Question 6 (3 points)

Given the realization

(a) Determine the transfer function $H(z)$ corresponding to this realization.
(b) Is this a stable realization? (Why?)
(c) Is this a minimal realization? (Why?)

Question 7 (5 points)

Design an analog 3rd order low-pass Butterworth filter $H(\Omega)$ with a passband frequency of 2 $\mathrm{rad} / \mathrm{s}$, a stopband frequency of $4 \mathrm{rad} / \mathrm{s}$ and a maximal damping in the passband of 1 dB .
(a) What is the general expression for the frequency response (squared-amplitude) of a prototype Butterworth low-pass filter.
(b) Determine the unknown filter parameters such that the specifications are met.
(c) For this filter, what is the minimal damping in the stopband ?
(d) We wish to transform this filter to a high-pass filter $G(\Omega)$ with a passband frequency $\Omega_{p}^{\prime}=2 \mathrm{rad} / \mathrm{s}$. What transformation do we use, what is the resulting frequency response $|G(\Omega)|^{2}$, and what is the resulting stopband frequency?

