EE2S11 SIGNALS AND SYSTEMS

Resit exam, 11 July 2022, 13:30–16:30

Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of seven questions (37 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each answer sheet.

Question 1 (6 points)

The behavior of a SISO LTI system is governed by the differential equation

$$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + 2\frac{\mathrm{d}y(t)}{\mathrm{d}t} + 2y(t) = x(t) + \frac{\mathrm{d}x(t)}{\mathrm{d}t},$$

where x(t) is the input signal and y(t) is the output signal.

- (a) Determine the transfer function H(s) and the impulse response h(t) of the system.
- (b) Determine the output signal y(t) in case the input signal is given by

$$x(t) = (1-t)e^{-t}u(t)$$

and the system is initially at rest.

(c) Determine $\lim_{t\to\infty} y(t)$ in case the input signal is given by

$$x(t) = 2u(t)$$

and the system is initially at rest.

Question 2 (6 points)

(a) The one-sided Laplace transform of a causal signal x(t) is given by

$$X(s) = \frac{3s+9}{s^2+2s+10}, \qquad \text{Re}(s) > -1.$$

Determine x(t).

(b) Determine the inverse Laplace transform of the signal

$$Y(s) = \frac{2}{s^2(s-1)}, \quad \text{Re}(s) > 1.$$

Question 3 (5 points)

Given the periodic signal x(t) with fundamental period $T_0 = \pi$ and

$$x(t) = \cos(t), \quad 0 < t < \pi.$$

- (a) Determine the average value of this signal.
- (b) Expand x(t) in a Fourier sine series.
- (c) The Fourier coefficients of x(t) decay as 1/k for $k \to \infty$. Explain why.

Question 4 (8 points)

- (a) Given the signal $x[n] = [\cdots, 0, \boxed{1}, 2, 3, 0, 0, \cdots]$, where the 'box' denotes the value for n = 0. Determine r[n] = x[n] * x[-n] using the convolution sum.
- (b) Given an input signal $x[n] = \left(\frac{1}{3}\right)^n u[n] + 2^n u[-n]$, where u[n] is the unit step function. Determine the z-transform X(z), also specify the ROC.
- (c) Let

$$X(z) = \frac{2z^2}{2z^2 + z - 1}$$
, ROC: $|z| > 1$.

Compute the inverse z-transform x[n].

- (d) Let $h[n] = [\cdots, 0, \boxed{1}, 2, 0, -2, -1, 0, \cdots]$. Compute the DTFT $H(e^{j\omega})$ and subsequently determine the magnitude response $|H(e^{j\omega})|$.
- (e) Compute all poles and zeros of X(z) in (c) and draw a pole-zero plot.

Question 5 (4 points)

Consider this realization of a causal system:

- (a) Determine the transfer function H(z).
- (b) Under which conditions on the coefficients (α, β, γ) is this a stable system?
- (c) Draw the "direct form no. II" realization, also specify the coefficients.

Question 6 (3 points)

A complex continuous-time signal $x_a(t)$ has amplitude spectrum as shown in the figure below. The signal is sampled with period T = 2 ms; the resulting signal is $x[n] = x_a(nT)$.

- (a) Draw the amplitude spectrum $|X(\omega)|$ of x[n]. Also indicate values on the axes.
- (b) Can we perfectly recover $x_a(t)$ from x[n]? (Why, or why not?)

Question 7 (5 points)

Consider an analog integrator with transfer function $H_a(s) = \frac{1}{s}$. We aim to implement this in the digital domain using the bilinear transformation.

- (a) What is the resulting transfer function H(z) if we apply the bilinear transformation?
- (b) What is the corresponding impulse response h[n]? Is this indeed an integrator?
- (c) Compute and draw the amplitude and phase response of both $H_a(s)$ and H(z). Where do (don't) they match?
- (d) More in general: what are two advantages of the filter design technique using the bilinear transformation?