EE2S11 SIGNALS AND SYSTEMS

Resit exam, 11 July 2022, 13:30-16:30
Closed book; one A4 (two sides) of handwritten notes permitted. No other tools except a basic pocket calculator permitted.

This exam consists of seven questions (37 points). Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each answer sheet.

Question 1 (6 points)

The behavior of a SISO LTI system is governed by the differential equation

$$
\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}+2 \frac{\mathrm{~d} y(t)}{\mathrm{d} t}+2 y(t)=x(t)+\frac{\mathrm{d} x(t)}{\mathrm{d} t}
$$

where $x(t)$ is the input signal and $y(t)$ is the output signal.
(a) Determine the transfer function $H(s)$ and the impulse response $h(t)$ of the system.
(b) Determine the output signal $y(t)$ in case the input signal is given by

$$
x(t)=(1-t) e^{-t} u(t)
$$

and the system is initially at rest.
(c) Determine $\lim _{t \rightarrow \infty} y(t)$ in case the input signal is given by

$$
x(t)=2 u(t)
$$

and the system is initially at rest.

Question 2 (6 points)

(a) The one-sided Laplace transform of a causal signal $x(t)$ is given by

$$
X(s)=\frac{3 s+9}{s^{2}+2 s+10}, \quad \operatorname{Re}(s)>-1 .
$$

Determine $x(t)$.
(b) Determine the inverse Laplace transform of the signal

$$
Y(s)=\frac{2}{s^{2}(s-1)}, \quad \operatorname{Re}(s)>1
$$

Question 3 (5 points)

Given the periodic signal $x(t)$ with fundamental period $T_{0}=\pi$ and

$$
x(t)=\cos (t), \quad 0<t<\pi .
$$

(a) Determine the average value of this signal.
(b) Expand $x(t)$ in a Fourier sine series.
(c) The Fourier coefficients of $x(t)$ decay as $1 / k$ for $k \rightarrow \infty$. Explain why.

Question 4 (8 points)

(a) Given the signal $x[n]=[\cdots, 0,[1,2,3,0,0, \cdots]$, where the 'box' denotes the value for $n=0$. Determine $r[n]=x[n] * x[-n]$ using the convolution sum.
(b) Given an input signal $x[n]=\left(\frac{1}{3}\right)^{n} u[n]+2^{n} u[-n]$, where $u[n]$ is the unit step function. Determine the z-transform $X(z)$, also specify the ROC.
(c) Let

$$
X(z)=\frac{2 z^{2}}{2 z^{2}+z-1}, \quad \text { ROC }:|z|>1 .
$$

Compute the inverse z-transform $x[n]$.
(d) Let $h[n]=[\cdots, 0,1,2,0,-2,-1,0, \cdots]$.

Compute the DTFT $H\left(e^{j \omega}\right)$ and subsequently determine the magnitude response $\left|H\left(e^{j \omega}\right)\right|$.
(e) Compute all poles and zeros of $X(z)$ in (c) and draw a pole-zero plot.

Question 5 (4 points)

Consider this realization of a causal system:

(a) Determine the transfer function $H(z)$.
(b) Under which conditions on the coefficients (α, β, γ) is this a stable system?
(c) Draw the "direct form no. II" realization, also specify the coefficients.

Question 6 (3 points)

A complex continuous-time signal $x_{a}(t)$ has amplitude spectrum as shown in the figure below. The signal is sampled with period $T=2 \mathrm{~ms}$; the resulting signal is $x[n]=x_{a}(n T)$.

(a) Draw the amplitude spectrum $|X(\omega)|$ of $x[n]$. Also indicate values on the axes.
(b) Can we perfectly recover $x_{a}(t)$ from $x[n]$? (Why, or why not?)

Question 7 (5 points)

Consider an analog integrator with transfer function $H_{a}(s)=\frac{1}{s}$. We aim to implement this in the digital domain using the bilinear transformation.
(a) What is the resulting transfer function $H(z)$ if we apply the bilinear transformation?
(b) What is the corresponding impulse response $h[n]$? Is this indeed an integrator?
(c) Compute and draw the amplitude and phase response of both $H_{a}(s)$ and $H(z)$. Where do (don't) they match?
(d) More in general: what are two advantages of the filter design technique using the bilinear transformation?

