# Resit exam EE2S11 SIGNALS \& SYSTEMS July 19, 2021 Block 1 (13:30-15:00) 

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:55-15:10
This block consists of three questions ( 25 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

## Question 1 (11 points)

Given a causal time-domain signal $i(t)$. On its ROC, the one-sided Laplace transform of $i(t)$ is given by

$$
I(s)=\frac{s-2}{s^{2}+2 s+2} .
$$

(a) What is its ROC?
(b) Determine $i\left(0^{+}\right)$.
(c) Determine $i(t)$.
(d) Compute $\frac{\mathrm{d} i}{\mathrm{~d} t}$.
(e) Determine the inverse Laplace transform of

$$
U(s)=\frac{s^{2}-2 s}{s^{2}+2 s+2},
$$

which has the same ROC as $I(s)$.

## Question 2 (5 points)

Given the signal $x(t)=t e^{-\alpha t} u(t)$ with $\alpha>0$.
(a) Determine the convolution $y(t)=x(t) * x(t)$ directly using the convolution integral.
(b) Determine the convolution $y(t)=x(t) * x(t)$ using the Laplace transform.

## Question 3 (9 points)

A periodic signal $x(t)$ with a fundamental period $T_{0}$ has a Fourier series expansion

$$
x(t)=\sum_{k=-\infty}^{\infty} \frac{\alpha}{\beta+(k \pi)^{2}} e^{\mathrm{j} k \pi t} \quad \text { with } \alpha>0 \text { and } \beta>0 .
$$

(a) What is the fundamental period $T_{0}$ ?
(b) What is the average value of $x(t)$ ?
(d) Is $x(t)$ even, odd, or neither? Motivate your answer.

One of the harmonics of $x(t)$ is expressed as $a \cos (4 \pi t)$.
(d) What is $a$ ?

# Resit exam EE2S11 SIGNALS \& SYSTEMS July 19, 2021 <br> Block 2 (15:25-16:55) 

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 16:50-17:05
This block consists of four questions ( 25 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

## Question 4 ( 9 points)

(a) Given the signals $x[n]=[\cdots, 0,1,2,3,0,0, \cdots]$ and $h[n]=[\cdots, 0,2,1,0, \cdots]$, where the 'box' denotes the value for $n=0$.

Determine $y[n]=h[n] * x[n]$ using the convolution sum.
(b) Given an input signal $x[n]=\left(\frac{1}{3}\right)^{|n|}$. Determine the $z$-transform $X(z)$, also specify the ROC.
(c) Let $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$ be the impulse response of a filter, let

$$
Y(z)=\frac{2 z^{2}}{2 z^{2}+z-1}, \quad \operatorname{ROC}:|z|>1
$$

and let $y[n]$ be the corresponding signal.
Compute the input signal $x[n]$ for which this $y[n]$ is the output of the filter.
(d) A filter $H(z)$ is called allpass if its magnitude response (amplitude spectrum) is constant over frequency.
Consider

$$
H(z)=z^{-1} \frac{1+3 z^{-2}}{3+z^{-2}}, \quad \text { ROC: }|z|>\frac{1}{\sqrt{3}}
$$

Determine if $H(z)$ is an allpass filter.
(e) Compute all poles and zeros of $H(z)$ in (d) and draw a pole-zero plot.

## Question 5 (5 points)

Consider the following system realization:

(a) Determine the transfer function $H(z)$.
(b) Is this a minimal realization? (Why?)
(c) Draw the corresponding Direct Form no. 2 realization.
(d) Determine $h[1]$, the impulse response at time $n=1$.

## Question 6 (6 points)

We have a discrete time sequence $x[n]$, and wish to implement a delay: $y[n]=x[n-\Delta]$. If $\Delta$ is not an integer, this has no formal meaning as we cannot shift the sequence $x[n]$ by anything but an integer.

To implement the effect of a non-integer delay, we consider the following setup:


The signal is first reconstructed (D/A conversion including an ideal reconstruction filter) assuming a certain sampling period of $T$, resulting in $x_{a}(t)$. Next, a suitable continuous-time filter $H(j \Omega)$ is applied, and the resulting signal $y_{a}(t)$ is sampled again with period $T$ so that we obtain the series $y[n]=y_{a}(n T)$.

(a) The spectrum $X(\omega)$ corresponding to $x[n]$ is drawn schematically above. Sketch the spectrum $X_{a}(\Omega)$ after ideal reconstruction. (Also indicate values on the horizontal and vertical axes.)
(b) Express $x_{a}(t)$ in terms of $x[n]$.
(c) Relate $y_{a}(t)$ to $x_{a}(t)$ in an equation.

Based on this, specify $H(j \Omega)$ such that the desired delay is obtained.
(d) Express $y[n]$ in terms of $x[n]$ in an equation.

Based on this, specify the equivalent discrete-time filter $h[n]$ that implements the noninteger delay.
(e) How should $T$ be selected?

## Question 7 (5 points)

We use the bilinear transform to design a digital lowpass filter $H(z)$ with the following specifications:

- Passband: $0 \leq|\omega| \leq 0.25 \pi$, maximal ripple 0.5 dB
- Stopband: $0.4 \pi \leq|\omega| \leq \pi$, minimal damping 50 dB .
(a) Specify the passband and stopband frequencies for the design of the corresponding analog lowpass filter
(b) What is the required filter order if we use a Butterworth filter?
(c) Suppose $G(z)=H(-z)$. Give a plot of the magnitude response $\left|G\left(e^{j \omega}\right)\right|$. Also specify values on both axes (derived from the specifications of $H(z)$ ).

