Resit exam EE2S11 SIGNAL PROCESSING July 21, 2020 Block 1 (13:30-15:00)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 14:55-15:10
This block consists of three questions (30 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 1 (10 points)

Given a SISO system with input signal $x(t)$ and output signal $y(t)$. For $T_{1} \geq 0$ and $T_{2} \geq 0$ and $T_{1}+T_{2} \neq 0$, the output signal $y(t)$ is related to the input signal $x(t)$ by

$$
y(t)=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} x(\tau) \mathrm{d} \tau .
$$

(a) The system is called a sliding window averager. Explain why.
(b) Is this system linear? Motivate your answer.
(c) Is this system time-invariant? Motivate your answer.
(d) Determine the transfer function of the system. What is its ROC?
(e) Determine the impulse response of the system.
(f) Is the system causal for $T_{1}>0$ and $T_{2}>0$? Motivate your answer.
(g) Is the system causal for $T_{1}>0$ and $T_{2}=0$? Motivate your answer.

Solution

(a) For each time instant t the output is the arithmetic average of the input signal taken over the interval $\left(t-T_{1}, t+T_{2}\right)$.
(b) Let $y_{i}(t)$ denote the output signals that correspond to the input signals $x_{i}(t), i=1,2$. Given the input signal $x(t)=\alpha x_{1}(t)+\beta x_{2}(t)$, where α and β are constants, we have

$$
\begin{aligned}
y(t) & =\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} x(\tau) \mathrm{d} \tau=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}}\left[\alpha x_{1}(t)+\beta x_{2}(t)\right] \mathrm{d} \tau \\
& =\alpha y_{1}(t)+\beta y_{2}(t)
\end{aligned}
$$

Linear combination of input signals leads to the same linear combination of the corresponding output signals. System is linear.
(c) Let $w(t)$ be the output signal of the system that corresponds to the input signal $v(t)$. In other words, we have

$$
w(t)=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} v(\tau) \mathrm{d} \tau
$$

Now let $x(t)=v(t-a)$ be a time-shifted version of the input signal with time shift a. The output signal $y(t)$ that corresponds to this input signal is

$$
\begin{aligned}
y(t) & =\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} x(\tau) \mathrm{d} \tau=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} v(\tau-a) \mathrm{d} \tau \\
& \stackrel{p=\tau-a}{=} \frac{1}{T_{1}+T_{2}} \int_{p=t-a-T_{1}}^{t-a+T_{2}} v(p) \mathrm{d} p=w(t-a) .
\end{aligned}
$$

A time shift in the input leads to a time-shifted output with the same time shift. System is time-invariant.
(d) System is LTI so we know that for an input signal $x(t)=e^{s t}$ the output signal will be $y(t)=H(s) e^{s t}$, where $H(s)$ is the transfer function. Substitution gives

$$
y(t)=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} x(\tau) \mathrm{d} \tau=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} e^{s \tau} \mathrm{~d} \tau=\frac{1}{s\left(T_{1}+T_{2}\right)}\left(e^{s T_{2}}-e^{-s T_{1}}\right) e^{s t}
$$

and we observe that

$$
H(s)=\frac{1}{T_{1}+T_{2}}\left(\frac{e^{s T_{2}}}{s}-\frac{e^{-s T_{1}}}{s}\right)
$$

The $\mathrm{ROC}=\mathbb{C}$, there is no pole at $s=0$.
(e) Inverse Laplace transform gives

$$
h(t)=\frac{1}{T_{1}+T_{2}}\left[u\left(t+T_{2}\right)-u\left(t-T_{1}\right)\right] .
$$

Can also be seen directly from the given input-output relation, of course.
(f) No. $h(t) \neq 0$ for $t<0$. Can also be seen from the given input-output relation, of course.
(g) Yes. In this case $h(t)=0$ for $t<0$. Can also be seen from the input-output relation.

Question 2 (10 points)

(a) Determine the Laplace transform $F(s)$ of the signal

$$
f(t)=\sinh (t) u(t)
$$

where $u(t)$ is the Heaviside unit step function.
(b) What is the ROC of $F(s)$?

For $t>0$, the behavior of a system with input signal $x(t)$ and output signal $y(t)$ is governed by the differential equation

$$
\frac{\mathrm{d}^{4} y}{\mathrm{~d} t^{4}}-y=x(t)
$$

At $t=0, y$ and its first three derivatives vanish.
(c) Determine the impulse response $h(t)$ of the system.
(d) True or false: the output signal $y(t)$ of the system for a given input signal $x(t)$ and with vanishing initial conditions is given by

$$
y(t)=\frac{1}{2} \int_{\tau=0}^{t}[\sinh (t-\tau)-\sin (t-\tau)] x(\tau) \mathrm{d} \tau, \quad t>0 .
$$

Motivate your answer.

Solution

(a) We have

$$
\begin{aligned}
F(s) & =\int_{t=0}^{\infty} \sinh (t) e^{-s t} \mathrm{~d} t=\int_{t=0}^{\infty} \frac{e^{t}-e^{-t}}{2} e^{-s t} \mathrm{~d} t \\
& =\frac{1}{2} \int_{t=0}^{\infty} e^{-(s-1) t}-e^{-(s+1) t} \mathrm{~d} t=\frac{1}{2} \lim _{T \rightarrow \infty} \int_{t=0}^{T} e^{-(s-1) t} \mathrm{~d} t-\frac{1}{2} \lim _{T \rightarrow \infty} \int_{t=0}^{T} e^{-(s+1) t} \mathrm{~d} t
\end{aligned}
$$

For the first integral, we have

$$
\frac{1}{2} \lim _{T \rightarrow \infty} \int_{t=0}^{T} e^{-(s-1) t} \mathrm{~d} t=\frac{1}{2} \frac{1}{s-1} \quad \text { for } \operatorname{Re}(s)>1
$$

For the second integral we have

$$
\frac{1}{2} \lim _{T \rightarrow \infty} \int_{t=0}^{T} e^{-(s+1) t} \mathrm{~d} t=\frac{1}{2} \frac{1}{s+1} \quad \text { for } \operatorname{Re}(s)>-1
$$

Consequently,

$$
F(s)=\frac{1}{2}\left(\frac{1}{s-1}-\frac{1}{s+1}\right)=\frac{1}{s^{2}-1} \quad \text { for } \operatorname{Re}(s)>1
$$

(b) $\operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>1\}$.
(c) Impulse response $h(t)$ is the response of the system to a delta input only (initial conditions vanish). In other words, h satisfies

$$
\frac{\mathrm{d}^{4} h}{\mathrm{~d} t^{4}}-h=\delta(t)
$$

with vanishing initial conditions. Applying the one-sided Laplace transform to this equation and taking the initial conditions into account, we obtain

$$
\left(s^{4}-1\right) H(s)=1 \quad \text { or } \quad H(s)=\frac{1}{s^{4}-1}=\frac{1}{\left(s^{2}-1\right)\left(s^{2}+1\right)}=\frac{1}{2}\left(\frac{1}{s^{2}-1}-\frac{1}{s^{2}+1}\right)
$$

for $\operatorname{Re}(s)>0$. An inverse Laplace transform now gives

$$
h(t)=\frac{1}{2}[\sinh (t)-\sin (t)] u(t) .
$$

(d) Output signal for an arbitrary input signal is

$$
y(t)=\int_{\tau=0}^{\infty} h(t-\tau) x(\tau) \mathrm{d} \tau=\frac{1}{2} \int_{\tau=0}^{t}[\sinh (t-\tau)-\sin (t-\tau)] x(\tau) \mathrm{d} \tau
$$

Statement is true.

Question 3 (10 points)

Let $x(t)$ be a periodic signal with fundamental period $T_{0}=4$. On the interval $(-2,2), x(t)$ is given by

$$
x(t)=t^{2}, \quad t \in(-2,2) .
$$

(a) What can you say about the decay of the Fourier coefficients as $|k| \rightarrow \infty$ without computing these coefficients explicitly?
(b) Determine X_{0}, the dc-component of the signal $x(t)$.
(c) Determine the Fourier coefficients X_{k} for $k \neq 0$.
(d) Determine the power P_{x} of the signal.
(e) Use Parseval's power relation to show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90} .
$$

Solution

(a) $x(t)$ is continuous, but its first derivative is not. Coefficients decay as $1 / k^{2}$ as $|k| \rightarrow \infty$.
(b)

$$
X_{0}=\frac{1}{4} \int_{t=-2}^{2} t^{2} \mathrm{~d} t=\frac{1}{2} \int_{t=0}^{2} t^{2} \mathrm{~d} t=\frac{4}{3}
$$

(c) For $k \neq 0$

$$
X_{k}=\frac{1}{4} \int_{t=-2}^{2} t^{2} \cos \left(k \Omega_{0} t\right) \mathrm{d} t=\frac{1}{2} \int_{t=0}^{2} t^{2} \cos \left(k \Omega_{0} t\right) \mathrm{d} t=\frac{8}{\pi^{2} k^{2}}(-1)^{k}
$$

(d)

$$
P_{x}=\frac{1}{4} \int_{t=-2}^{2} t^{4} \mathrm{~d} t=\frac{1}{2} \int_{t=0}^{2} t^{4} \mathrm{~d} t=\frac{16}{5} .
$$

(e) Parseval's power relation:

$$
\begin{aligned}
P_{x} & =\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}=\left|X_{0}\right|^{2}+\sum_{k=-\infty, k \neq 0}^{\infty}\left|X_{k}\right|^{2} \\
& =\frac{16}{9}+2 \sum_{k=1}^{\infty} \frac{64}{\pi^{4} k^{4}} \\
& =\frac{16}{9}+\frac{128}{\pi^{4}} \sum_{k=1}^{\infty} \frac{1}{k^{4}}
\end{aligned}
$$

from which it follows that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\left(\frac{16}{5}-\frac{16}{9}\right) \cdot \frac{\pi^{4}}{128}=\frac{\pi^{4}}{90}
$$

Resit exam EE2S11 SIGNAL PROCESSING July 21, 2020

 Block 2 (15:00-16:30)

 Block 2 (15:00-16:30)}

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

> Upload answers during 16:30-16:45

This block consists of four questions (27 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 4 (10 points)

(a) Given the signals $x[n]=[\cdots, 0,1,2,3,0, \cdots]$ and $h[n]=[\cdots, 0,1,2,0, \cdots]$.

Determine $y[n]=h[n] * x[n]$ using the convolution sum.
(b) Given an input signal $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$, and a system described by the difference equation

$$
y[n]=2 x[n]-\frac{1}{2} y[n-1]
$$

Determine the output signal $y[n]$.
(c) Consider

$$
X(z)=\frac{z^{2}-1}{z^{2}+4}
$$

Make a pole-zero plot, and compute $x[n]$ for two cases: (i) ROC: $|z|<2$, and (ii) ROC: $|z|>2$.
(d) Given $x[n]=2 a^{n} \cos \left(\omega_{0} n\right)$, with $|a|<1$. Determine the DTFT $X(\omega)$.

Solution

(a) 1 pnt $y[n]=\sum_{k=1}^{2} h[k] x[n-k]$

$$
\begin{array}{r|r|llll}
k=1: x[n-1]: & \boxed{1} & 2 & 3 & 0 & \cdots \\
k=2: 2 x[n-2]: & \boxed{0} & 2 & 4 & 6 & 0 \cdots \\
\hline y[n]: & 1 & 4 & 7 & 6 & 0 \cdots
\end{array}
$$

(b) 3 pnt

$$
X(z)=\frac{1}{1-\frac{1}{4} z^{-1}}, \quad \operatorname{ROC}:|z|>\frac{1}{4}
$$

$$
\begin{aligned}
Y(z) & =\frac{2 X(z)}{1+\frac{1}{2} z^{-1}} \\
& =\frac{2}{\left(1-\frac{1}{4} z^{-1}\right)\left(1+\frac{1}{2} z^{-1}\right)} \\
& =\frac{2 / 3}{1-\frac{1}{4} z^{-1}}+\frac{4 / 3}{1+\frac{1}{2} z^{-1}} . \\
y[n] & =\frac{2}{3}\left(\frac{1}{4}\right)^{n} u[n]+\frac{4}{3}\left(-\frac{1}{2}\right)^{n} u[n] .
\end{aligned}
$$

(c) 4 pnt Poles at $z= \pm 2 j$, zeros at $z= \pm 1$.

$$
\begin{aligned}
X(z) & =\frac{z^{2}-1}{z^{2}+4}=\frac{1-z^{-2}}{1+4 z^{-2}} \\
& =-\frac{1}{4}+\frac{5 / 4}{1+4 z^{-2}} \\
& =-\frac{1}{4}+\frac{5 / 8}{1+2 j z^{-1}}+\frac{5 / 8}{1-2 j z^{-1}} \quad=-\frac{1}{4}+\frac{j 5 / 16 z}{1-\frac{1}{2} j z}-\frac{j 5 / 16 z}{1+\frac{1}{2} j z}
\end{aligned}
$$

(i) ROC $|z|<2$: anticausal (but stable) response:

$$
\begin{aligned}
x[n] & =-\frac{1}{4} \delta[n]+\frac{5}{16}\left[j\left(\frac{1}{2} j\right)^{-n-1}-j\left(-\frac{1}{2} j\right)^{-n-1}\right] u[-n-1] \\
& =-\frac{1}{4} \delta[n]-\frac{5}{8}\left(\frac{1}{2}\right)^{-n-1} \sin \left(\frac{1}{2} \pi(-n-1)\right) u[-n-1] .
\end{aligned}
$$

(ii) ROC $|z|>2$: causal (but unstable) response:

$$
x[n]=-\frac{1}{4} \delta[n]+\frac{5}{8}\left[(2 j)^{n}+(-2 j)^{n}\right] u[n]=-\frac{1}{4} \delta[n]+\frac{5}{4} 2^{n} \cos \left(\frac{1}{2} \pi n\right) u[n] .
$$

Many different (but equivalent) expressions are possible here. Check the solution using $\lim _{z \rightarrow \infty} X(z)=1=x[0]$.
(d) 2 pnt

$$
\begin{aligned}
a^{n} u[n] & \rightarrow \frac{1}{1-a e^{-j \omega}} \\
2 \cos \left(\omega_{0} n\right)=e^{j \omega_{0} n}+e^{-j \omega_{0} n} & \rightarrow 2 \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] .
\end{aligned}
$$

Using $x[n] \cdot y[n] \leftrightarrow \frac{1}{2 \pi} X(\omega) * Y(\omega)$:

$$
X(\omega)=\frac{1}{1-a e^{-j\left(\omega-\omega_{0}\right)}}+\frac{1}{1-a e^{-j\left(\omega+\omega_{0}\right)}} .
$$

This expression could be rewritten as

$$
X(\omega)=\frac{2-2 a \cos \left(\omega-\omega_{0}\right)}{1+a^{2} e^{-j 2 \omega}+2 a \cos \left(\omega-\omega_{0}\right)} .
$$

Question 5 (4 points)

Consider the following system realization:

(a) Determine the transfer function $H(z)$.
(b) Is this a minimal realization? (Why?)
(c) Draw the corresponding Direct Form no. 2 realization.

Solution

(a) 2 pnt Call the inputs of the two delay elements $P(z)$ and $Q(z)$.

$$
\begin{gathered}
\left\{\begin{aligned}
P(z) & =3 X(z)+\frac{1}{3} Y(z) \\
Q(z) & =2 X(z)+\frac{1}{2} Y(z)+z^{-1} P(z) \\
Y(z) & =X(z)+z^{-1} Y(z)
\end{aligned}\right. \\
Y(z)=X(z)+z^{-1}\left(2+\frac{1}{2} Y(z)\right)+z^{-2}\left(3+\frac{1}{3} X(z)\right) \\
H(z)=\frac{1+2 z^{-1}+3 z^{-3}}{1-\frac{1}{2} z^{-1}-\frac{1}{3} z^{-2}}
\end{gathered}
$$

(b) 1 pnt Yes, $H(z)$ is 2 nd order and the realization uses 2 delay elements.
(c) 1 pnt

Question 6 (5 points)

A continuous-time signal $x_{a}(t)$ has an amplitude spectrum $X_{a}(F)$ as shown below. The signal is sampled with period T so that we obtain a series $x[n]=x_{a}(n T)$.

For this question, draw the spectra at least for ω running from -2π until 2π.
(a) What is the Nyquist frequency at which we would have to sample to avoid any aliasing?
(b) We sample the signal at 30 kHz . Make a drawing of the resulting amplitude spectrum $|X(\omega)|$ of $x[n]$. Also mark the frequencies.
(c) After sampling, we apply an ideal digital highpass filter, with cutoff frequency $\omega_{c}=\frac{1}{3} \pi$. Make a drawing of the resulting amplitude spectrum $|Y(\omega)|$. Also mark the frequencies.
(d) After sampling, we invert every second sample of $x[n]$, resulting in $r[n]=(-1)^{n} x[n]$.

Make a drawing of the resulting amplitude spectrum $|R(\omega)|$. Also mark the frequencies.

Solution

(a) 1 pnt 20 kHz .
(b) 1 pnt

(d) 2 pnt The effect of this modulation by $e^{j \pi n}$ is a shift of the spectrum by π, i.e. $R(\omega)=X(\omega-\pi)$.

Question 7 (8 points)

In this question, we will design a Chebyshev type II lowpass filter $G(\Omega)$ with the following specifications:

$$
\begin{array}{lc}
\text { Third order } & \\
\text { Passband: } & F_{p}=3 \mathrm{kHz} \\
\text { Stopband: } & F_{s}=5 \mathrm{kHz} \\
\text { Minimal stopband damping: } & 20 \mathrm{~dB}
\end{array}
$$

Recall that a template Chebyshev (type I) filter has amplitude response

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2} T_{n}^{2}(\Omega)} .
$$

A Chebyshev type II filter $G(\Omega)$ is derived from type I in two steps. First,

$$
|F(\Omega)|^{2}=1-|H(\Omega)|^{2}=\frac{\epsilon^{2} T_{n}^{2}(\Omega)}{1+\epsilon^{2} T_{n}^{2}(\Omega)} .
$$

Next, apply a frequency transformation $\Omega \rightarrow \frac{\Omega_{0}}{\Omega}$:

$$
|G(\Omega)|^{2}=\left|F\left(\Omega_{0} / \Omega\right)\right|^{2}=\frac{\epsilon^{2} T_{n}^{2}\left(\Omega_{0} / \Omega\right)}{1+\epsilon^{2} T_{n}^{2}\left(\Omega_{0} / \Omega\right)} .
$$

(a) Recall that the third order Chebyshev polynomial is given by

$$
T_{3}(\Omega)=4 \Omega^{3}-3 \Omega .
$$

Give a plot of $T_{3}(\Omega)$. Determine Ω for which $T_{3}(\Omega)$ is $0,1, \infty$.
(b) Draw plots for $|H(\Omega)|^{2},|F(\Omega)|^{2}$ and $|G(\Omega)|^{2}$ (for $n=3$ and $\Omega_{0}=1$).

Indicate values on the horizontal and vertical axes. Pay attention to accurately draw the ripples.
(c) Determine Ω_{0} and ϵ such that $G(\Omega)$ satisfies the specifications listed at the beginning of this question.
(d) How many dB is the maximal passband attenuation for this 3rd order Chebyshev II filter?

Solution

(a) 2 pnt

$$
\begin{aligned}
& T_{3}(\Omega)=0 \Leftrightarrow \Omega\left(4 \Omega^{2}-3\right)=0 \Rightarrow \Omega=0 \text { or } \Omega= \pm \frac{\sqrt{3}}{2} \\
& T_{3}(\Omega)=1 \Leftrightarrow(\Omega-1)\left(4 \Omega^{2}+4 \Omega+1\right)=0 \Rightarrow \Omega=1 \text { or } \Omega=-\frac{1}{2} \\
& T_{3}(\Omega)=\infty \Leftrightarrow \Omega=\infty
\end{aligned}
$$

(b) 2 pnt Use the plot of $T_{3}(\Omega)$ to get the shape of the ripple right. E.g., $|H(\Omega)|=1$, and there is one other point (at $\Omega=\sqrt{3} / 2$) where $|H(\Omega)|=1$.
The plot of $|F(\Omega)|$ is a transformation of the vertical axis and results in a highpass filter. The plot of $|G(\Omega)|$ is found after a transformation of the horizontal axis, $\Omega \rightarrow 1 / \Omega$, which transforms a highpass into a lowpass.

(c) 2 pnt Take $\Omega_{0}=2 \pi F_{s}=10 \pi \cdot 1000=31.4 \mathrm{krad} / \mathrm{s}$.

At $\Omega_{0}, T_{3}\left(\Omega_{0} / \Omega\right)=1$, and

$$
\left|G\left(\Omega_{0}\right)\right|^{2}=\frac{\epsilon^{2}}{1+\epsilon^{2}}=1-\frac{1}{1+\epsilon^{2}}=10^{-20 / 10} \quad \Leftrightarrow \quad \epsilon=\sqrt{\frac{1}{0.99}-1}=0.1005
$$

(d) 2 pnt $\Omega_{p}=2 \pi \cdot 3000, T_{3}\left(\Omega_{0} / \Omega_{p}\right)=T_{3}(5 / 3)=13.519$.

$$
\left|G\left(\Omega_{0}\right)\right|^{2}=0.6486
$$

The maximal damping is $-10 \log (0.6486)=1.88 \mathrm{~dB}$.

