Resit exam EE2S11 SIGNAL PROCESSING July 21, 2020 Block 1 (13:30-15:00)

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.
Upload answers during 14:55-15:05

This block consists of three questions (30 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 1 (10 points)

Given a SISO system with input signal $x(t)$ and output signal $y(t)$. For $T_{1} \geq 0$ and $T_{2} \geq 0$ and $T_{1}+T_{2} \neq 0$, the output signal $y(t)$ is related to the input signal $x(t)$ by

$$
y(t)=\frac{1}{T_{1}+T_{2}} \int_{\tau=t-T_{1}}^{t+T_{2}} x(\tau) \mathrm{d} \tau .
$$

(a) The system is called a sliding window averager. Explain why.
(b) Is this system linear? Motivate your answer.
(c) Is this system time-invariant? Motivate your answer.
(d) Determine the transfer function of the system. What is its ROC?
(e) Determine the impulse response of the system.
(f) Is the system causal for $T_{1}>0$ and $T_{2}>0$? Motivate your answer.
(g) Is the system causal for $T_{1}>0$ and $T_{2}=0$? Motivate your answer.

Question 2 (10 points)

(a) Determine the Laplace transform $F(s)$ of the signal

$$
f(t)=\sinh (t) u(t),
$$

where $u(t)$ is the Heaviside unit step function.
(b) What is the ROC of $F(s)$?

For $t>0$, the behavior of a system with input signal $x(t)$ and output signal $y(t)$ is governed by the differential equation

$$
\frac{\mathrm{d}^{4} y}{\mathrm{~d} t^{4}}-y=x(t)
$$

At $t=0, y$ and its first three derivatives vanish.
(c) Determine the impulse response $h(t)$ of the system.
(d) True or false: the output signal $y(t)$ of the system for a given input signal $x(t)$ and with vanishing initial conditions is given by

$$
y(t)=\frac{1}{2} \int_{\tau=0}^{t}[\sinh (t-\tau)-\sin (t-\tau)] x(\tau) \mathrm{d} \tau, \quad t>0 .
$$

Motivate your answer.

Question 3 (10 points)

Let $x(t)$ be a periodic signal with fundamental period $T_{0}=4$. On the interval $(-2,2), x(t)$ is given by

$$
x(t)=t^{2}, \quad t \in(-2,2) .
$$

(a) What can you say about the decay of the Fourier coefficients as $|k| \rightarrow \infty$ without computing these coefficients explicitly?
(b) Determine X_{0}, the dc-component of the signal $x(t)$.
(c) Determine the Fourier coefficients X_{k} for $k \neq 0$.
(d) Determine the power P_{x} of the signal.
(e) Use Parseval's power relation to show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90} .
$$

Resit exam EE2S11 SIGNAL PROCESSING July 21, 2020

 Block 2 (15:00-16:30)

 Block 2 (15:00-16:30)}

Open book, strictly timed take-home exam. (Electronic) copies of the book and the course slides allowed. No other tools except a basic pocket calculator permitted.

Upload answers during 16:30-16:45
This block consists of four questions (27 points); more than usual, and this will be taken into account during grading. Answer in Dutch or English. Make clear in your answer how you reach the final result; the road to the answer is very important. Write your name and student number on each sheet.

Question 4 (10 points)

(a) Given the signals $x[n]=[\cdots, 0,1,2,3,0, \cdots]$ and $h[n]=[\cdots, 0,1,2,0, \cdots]$.

Determine $y[n]=h[n] * x[n]$ using the convolution sum.
(b) Given an input signal $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$, and a system described by the difference equation

$$
y[n]=2 x[n]-\frac{1}{2} y[n-1]
$$

Determine the output signal $y[n]$.
(c) Consider

$$
X(z)=\frac{z^{2}-1}{z^{2}+4}
$$

Make a pole-zero plot, and compute $x[n]$ for two cases: (i) ROC: $|z|<2$, and (ii) ROC: $|z|>2$.
(d) Given $x[n]=2 a^{n} \cos \left(\omega_{0} n\right)$, with $|a|<1$. Determine the DTFT $X(\omega)$.

Question 5 (4 points)

Consider the following system realization:

(a) Determine the transfer function $H(z)$.
(b) Is this a minimal realization? (Why?)
(c) Draw the corresponding Direct Form no. 2 realization.

Question 6 (5 points)

A continuous-time signal $x_{a}(t)$ has an amplitude spectrum $X_{a}(F)$ as shown below. The signal is sampled with period T so that we obtain a series $x[n]=x_{a}(n T)$.

For this question, draw the spectra at least for ω running from -2π until 2π.
(a) What is the Nyquist frequency at which we would have to sample to avoid any aliasing?
(b) We sample the signal at 30 kHz . Make a drawing of the resulting amplitude spectrum $|X(\omega)|$ of $x[n]$. Also mark the frequencies.
(c) After sampling, we apply an ideal digital highpass filter, with cutoff frequency $\omega_{c}=\frac{1}{3} \pi$. Make a drawing of the resulting amplitude spectrum $|Y(\omega)|$. Also mark the frequencies.
(d) After sampling, we invert every second sample of $x[n]$, resulting in $r[n]=(-1)^{n} x[n]$. Make a drawing of the resulting amplitude spectrum $|R(\omega)|$. Also mark the frequencies.

Question 7 (8 points)

In this question, we will design a Chebyshev type II lowpass filter $G(\Omega)$ with the following specifications:

$$
\begin{array}{lc}
\text { Third order } & \\
\text { Passband: } & F_{p}=3 \mathrm{kHz} \\
\text { Stopband: } & F_{s}=5 \mathrm{kHz} \\
\text { Minimal stopband damping: } & 20 \mathrm{~dB}
\end{array}
$$

Recall that a template Chebyshev (type I) filter has amplitude response

$$
|H(\Omega)|^{2}=\frac{1}{1+\epsilon^{2} T_{n}^{2}(\Omega)} .
$$

A Chebyshev type II filter $G(\Omega)$ is derived from type I in two steps. First,

$$
|F(\Omega)|^{2}=1-|H(\Omega)|^{2}=\frac{\epsilon^{2} T_{n}^{2}(\Omega)}{1+\epsilon^{2} T_{n}^{2}(\Omega)} .
$$

Next, apply a frequency transformation $\Omega \rightarrow \frac{\Omega_{0}}{\Omega}$:

$$
|G(\Omega)|^{2}=\left|F\left(\Omega_{0} / \Omega\right)\right|^{2}=\frac{\epsilon^{2} T_{n}^{2}\left(\Omega_{0} / \Omega\right)}{1+\epsilon^{2} T_{n}^{2}\left(\Omega_{0} / \Omega\right)} .
$$

(a) Recall that the third order Chebyshev polynomial is given by

$$
T_{3}(\Omega)=4 \Omega^{3}-3 \Omega
$$

Give a plot of $T_{3}(\Omega)$. Determine Ω for which $T_{3}(\Omega)$ is $0,1, \infty$.
(b) Draw plots for $|H(\Omega)|^{2},|F(\Omega)|^{2}$ and $|G(\Omega)|^{2}$ (for $n=3$ and $\Omega_{0}=1$).

Indicate values on the horizontal and vertical axes. Pay attention to accurately draw the ripples.
(c) Determine Ω_{0} and ϵ such that $G(\Omega)$ satisfies the specifications listed at the beginning of this question.
(d) How many dB is the maximal passband attenuation for this 3rd order Chebyshev II filter?

