Partial exam EE2S11 Signals and Systems Part 2: 31 January 2020, 13:30-15:30

Closed book; two sides of handwritten notes permitted This exam consists of five questions (36 points)

Question 1 (11 points)

a) Determine the Fourier transform of

$$
x(t)=e^{-a|t|} \cos \left(\Omega_{0} t\right)
$$

for $a>0$.
b) Determine the z-transform of

$$
h[n]=(\delta[n]+\delta[n-1]) * a^{n} u[n],
$$

for $|a|<1$, where ' $*$ ' denotes convolution. Also specify the ROC.
c) The transfer function of an FIR filter is $H(z)=z^{-2}\left(0.5 z+1-0.5 z^{-1}\right)$. Find the frequency response of this filter. Is this a linear-phase filter? (Motivate)
d) Determine the inverse z-transform of

$$
H(z)=\frac{z+1}{z^{2}+0.81}, \quad \text { ROC: }|z|>0.9
$$

Is this a stable filter (why)?
e) Determine the inverse z-transform of

$$
H(z)=\frac{z+1}{z^{2}+0.81}, \quad \text { ROC: }|z|<0.9 .
$$

Is this a stable filter (why)?

Question 2 (8 points)

The output of a discrete-time causal filter with transfer function

$$
H(z)=\frac{z+1}{z^{2}+0.81}
$$

is a sequence $y[n]=\delta[n-1]+\delta[n-2]$.
a) Determine the input sequence $x[n]$ such that the output of the filter is the given $y[n]$.
b) Determine all poles and zeros of the filter and draw a pole-zero plot.
c) Using b), sketch the amplitude spectrum $\left|H\left(e^{j \omega}\right)\right|$, also indicate values on the axes.
d) Draw the "Direct form no. II" realization of the filter and also specify the coefficients.

Question 3 (6 points)

Consider an analog signal $x_{a}(t)$ with Fourier transform $X_{a}(F)$ (with F in Hz). Suppose that the signal is bandlimited with maximal frequency 5 kHz . The signal is sampled at $F_{s}=10 \mathrm{kHz}$. The resulting discrete-time signal $x[n]$ has spectrum $X(\omega)$ as shown below:

a) Using ideal components, is it possible to recover $x_{a}(t)$ from $x[n]$? (How? Or why not?)
b) What is the relation between F and ω ?
c) Plot $\left|X_{a}(F)\right|$.
d) Suppose that, instead, we sample $x_{a}(t)$ at 5 kHz . Draw the spectrum of the resulting digital signal (also clearly mark the frequencies).

Question 4 (4 points)

a) Determine the transfer function $H(z)$ of the following realization:

b) Is this a minimal realization? (Why?)

Question 5 (7 points)

A second-order analog lowpass filter is given by

$$
H(s)=\frac{1}{s^{2}+\sqrt{2} s+1}
$$

a) Determine the squared magnitude response, $|H(j \Omega)|^{2}$, and give a sketch of it. In the plot, also specify the cut-off frequency.
b) What transformation is needed to obtain a high-pass filter with cut-off frequency Ω_{c} $[\mathrm{rad} / \mathrm{s}]$? Give an expression for the resulting high-pass filter $G_{a}(s)$.

We want to use $G_{a}(s)$ to design a second order digital high-pass filter with cut-off frequency $\omega_{c}=0.2 \pi[\mathrm{rad}]$.
c) Is the bilinear transform suitable? (Motivate.)
d) Give an expression for the resulting digital high-pass filter $G(z)$.

