SOLUTIONS

Problem 1

a) Bold line $=$ graph of signal $f(t)$.

b) Bold line $=$ graph of signal $g(t)$.

c) $v(t)=\operatorname{sign}(t)$. Bold line $=$ graph of signal $v(t)$.

d) $x(t)$ is a unit step function that starts at $t=-1 / 2: x^{\prime}(t)=\delta(t+1 / 2)$, $A=1, \tau=-1 / 2$.

Problem 2

a) $f(t)=-(-t) x(t)$ with $x(t)=\cos (2 t) u(t)$. Laplace transform

$$
F(s)=-\frac{\mathrm{d} X}{\mathrm{~d} s} \quad \text { with } \quad X(s)=\frac{s}{s^{2}+4} \quad \text { and } \quad \operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\} .
$$

Computing the derivative, we find

$$
F(s)=\frac{s^{2}-4}{\left(s^{2}+4\right)^{2}}, \quad \operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\} .
$$

b)

$$
F_{1}(s)=\frac{s+3}{(s+2)(s+5)}=\frac{1}{3} \frac{1}{s+2}+\frac{2}{3} \frac{1}{s+5}
$$

We obtain: $f_{1}(t)=\frac{1}{3} e^{-2 t} u(t)+\frac{2}{3} e^{-5 t} u(t)$.
c)

$$
F_{2}(s)=\frac{1}{\left(s^{2}+4\right)\left(s^{2}+9\right)}=\frac{1}{5} \frac{1}{s^{2}+4}-\frac{1}{5} \frac{1}{s^{2}+9}=\frac{1}{10} \frac{2}{s^{2}+2^{2}}-\frac{1}{15} \frac{3}{s^{2}+3^{2}} .
$$

We obtain $f_{2}(t)=\frac{1}{10} \sin (2 t) u(t)-\frac{1}{15} \sin (3 t) u(t)$.
d)

$$
F_{3}(s)=\frac{1}{\left(s^{2}+4\right)^{2}}=-\frac{1}{8} \frac{\left(s^{2}-4\right)}{\left(s^{2}+4\right)^{2}}+\frac{1}{8} \frac{1}{s^{2}+4}=\frac{1}{8} \frac{\mathrm{~d}}{\mathrm{~d} s} \frac{s}{s^{2}+4}+\frac{1}{16} \frac{2}{s^{2}+2^{2}} .
$$

We obtain $f_{3}(t)=-\frac{1}{8} t \cos (2 t) u(t)+\frac{1}{16} \sin (2 t) u(t)$.

Problem 3

a) Since $x(t)$ is odd, we find

$$
X_{0}=\frac{1}{2} \int_{t=-1}^{1} x(t) \mathrm{d} t=0 .
$$

b) Signal is odd and therefore $X_{-k}=-X_{k}$, that is, the Fourier coefficients are odd functions of k. Signal is also real-valued and therefore $X_{k}^{*}=X_{-k}$. Combining these two results, we find

$$
X_{k}^{*}=-X_{k}
$$

showing that X_{k} is purely imaginary.
c) For $k \neq 0$, evaluate the integral

$$
X_{k}=\frac{1}{2} \int_{t=-1}^{1} t e^{-\mathrm{j} k \pi t} \mathrm{~d} t
$$

and the result follows.
d) Imaginary part of Y_{k} are the Fourier coefficients of $y_{\mathrm{o}}(t)$. Conclusion: $y_{\mathrm{o}}(t)=x(t)$.
e) Real part of Y_{k} are the Fourier coefficients of $y_{\mathrm{e}}(t)$. Even part is continuous (no $1 / k$-term).
f) $\operatorname{Re}[z(t)]=\frac{1}{2} x(t)$.

