EE2S11 SIGNALS AND SYSTEMS

Part 1, 9 December 2019, 13:30-15:30
Closed book; two sides of one A4 page with handwritten notes permitted. Graphic calculators not permitted.
This exam has three questions (28 points)

Question 1 (5 points)

Let $u(t)$ denote the Heaviside unit step function, and $\operatorname{sign}(t)$ the sign-function. Plot the signals
a) $f(t)=u[\sin (t)]$
b) $g(t)=2 u[\sin (t)]-1$
c) $v(t)=\sin \left[\frac{\pi}{2} \operatorname{sign}(t)\right]$.

Consider the signal

$$
x(t)=u(2 t+1),
$$

where $u(t)$ is the Heaviside unit step function. Its derivative $x^{\prime}(t)$ can be written as

$$
x^{\prime}(t)=A \delta(t-\tau) .
$$

d) Determine the constants A and τ.

Question 2 (12 points)

a) Determine the Laplace transform of the signal

$$
f(t)=t \cos (2 t) u(t),
$$

and provide its ROC.
Find the inverse Laplace transforms of
b) $F_{1}(s)=\frac{s+3}{s^{2}+7 s+10}, \quad \operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>-2\}$.
c) $F_{2}(s)=\frac{1}{\left(s^{2}+4\right)\left(s^{2}+9\right)}, \quad \operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}$.
d) $F_{3}(s)=\frac{1}{\left(s^{2}+4\right)^{2}}, \quad \operatorname{ROC}=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}$.

Question 3 (11 points)

The Fourier series expansion of a periodic signal $x(t)$ is given by

$$
X_{k}=\frac{1}{T_{0}} \int_{t=t_{0}}^{t_{0}+T_{0}} x(t) e^{-\mathrm{j} k \Omega_{0} t} \mathrm{~d} t, \quad k \in \mathbb{Z}
$$

Let $x(t)$ be a periodic signal with fundamental period $T_{0}=2$. On the interval $(-1,1), x(t)$ is given by

$$
x(t)=t, \quad t \in(-1,1) .
$$

a) Determine the dc component X_{0} of the signal $x(t)$.
b) Explain why the Fourier coefficients X_{k} of $x(t)$ are an odd function of k and purely imaginary.
c) Show that the Fourier components of $x(t)$ are given by

$$
X_{k}=\mathrm{j} \frac{(-1)^{k}}{k \pi}, \quad k \neq 0
$$

The Fourier coefficients of a second real-valued periodic signal $y(t)$ with fundamental period $T_{0}=2$ are given by

$$
Y_{0}=3 / 2 \quad \text { and } \quad Y_{k}=\frac{1-(-1)^{k}}{(k \pi)^{2}}+\mathrm{j} \frac{(-1)^{k}}{k \pi}, \quad k \neq 0
$$

d) Determine $y_{\mathrm{o}}(t)$, the odd part of the signal $y(t)$.
e) Is the even part of $y(t)$ continuous? Motivate your answer.

A third complex-valued signal $z(t)$ is also periodic with fundamental period $T_{0}=2$ and its Fourier coefficients are given by

$$
Z_{k}= \begin{cases}0 & k \in \mathbb{Z}, k \leq 0 \\ X_{k} & k \in \mathbb{Z}, k \geq 1\end{cases}
$$

f) Determine $\operatorname{Re}[z(t)]$, the real part of signal $z(t)$.

