Chapter 9

Discrete-time Signals and Systems

9.1 Basic Problems

9.1 See Fig. 9.1 for some of the answers.

Expressing $x[n]=\delta[n+1]+\delta[n]+\delta[n-1]+0.5 \delta[n-2]$ we then have
(a) $x[n-1]$ is $x[n]$ delayed by 1 (shifted right 1 sample); $x[-n]$ is the reflection of $x[n]$, and $x[-n+2]$ is $x[n]$ reflected and shifted right by 2 samples, or $x[-n+2]=0.5 \delta[-n]+\delta[-n+1]+\delta[-n+2]+$ $\delta[-n+3]=0.5 \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]$ because $\delta[n]$ is even. (b)(c) Even

$$
x_{e}[n]=0.5(x[n]+x[-n]) \begin{cases}1 & n=-1,0,1 \\ 0.25 & n=-2,2 \\ 0 & \text { otherwise }\end{cases}
$$

and the odd component is

$$
x_{o}[n]=0.5(x[n]-x[-n])\left\{\begin{array}{rl}
-0.25 & n=-2 \\
0.25 & n=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Figure 9.1: Problem 1
9.2 (a) The discrete frequency of $x[n]$ is

$$
\omega_{0}=0.7 \pi=\frac{2 \pi \times 7}{20}
$$

so that the fundamental period is $N_{0}=20$ and $m=7$.
(b) $\left.x(t)\right|_{t=n T_{s}}=x\left(n T_{s}\right)=\cos \left(\pi n T_{s}\right)$, so $T_{s}=0.7 \mathrm{sec} /$ sample, and the sampling frequency $\Omega_{s}=$ $2 \pi / T_{s}=\pi \times(20 / 7) \mathrm{rad} / \mathrm{sec}$ which satisfies Nyquist since $\Omega_{\max }=\pi \mathrm{rad} / \mathrm{sec}$. i.e., $\Omega_{s}>2 \Omega_{\max }$. The discrete-time signal here coincides with the one given above.
(c) To make $\cos \left(\pi n T_{s}\right)$ look like $\cos (\pi t)$ we need to divide its fundamental period into large number of points, e.g., the fundamental period of $x(t)$ is $T_{0}=2$, letting $T_{s}=T_{0} / N$ for $N \geq 2$ would satisfy Nyquist but also would provide a discrete signal that looks like the analog signal when N is large. For instance, in this case $T_{s} \leq 1$ so that $T_{s}=1(N=2)$ and $T_{s}=0.1(N=20)$ both satisfy Nyquist but the latter one gives a signal that looks like the analog signal while the other does not.
9.3 (a) The discrete frequency for the given signals are
(i) $\quad x[n]: \quad \omega_{0}=\pi=\frac{2 \pi}{2} \Rightarrow$ periodic with period $N_{0}=2$
(ii) $y[n]: \quad \omega_{0}=1 \neq \frac{2 \pi m}{N_{0}}$, not periodic
(iii) $z[n]: \quad$ not periodic, as $y[n]$ is not periodic
(iv) $\quad v[n]: \quad \omega_{0}=\frac{3 \pi}{2}=\frac{2 \pi}{4} 3, \Rightarrow$ periodic with period $N_{0}=4$
(b) $x_{1}[n]$ is periodic of fundamental period $N_{1}=4$, and $y_{1}[n]$ is periodic of fundamental period $N_{2}=6$ so that

$$
\frac{N_{1}}{N_{2}}=\frac{4}{6}=\frac{2}{3}
$$

then the sum $z_{1}[n]=x_{1}[n]+y_{1}[n]$ is periodic of period $3 N_{1}=2 N_{2}=12$, i.e., three periods of $x_{1}[n]$ fit in 2 of $y_{1}[n]$.
Similarly, $v_{1}[n]$ is periodic of period 12. Indeed,

$$
v_{1}[n+12]=x_{1}[n+12] y_{1}[n+12]=x_{1}[n] y_{1}[n]
$$

since 12 is three times the period of $x_{1}[n]$ and two times the period of $y_{1}[n]$.
The compressed signal $w_{1}[n]=x_{1}[2 n]$ has period $N_{1} / 2=2$:

$$
w_{1}[n+2]=x_{1}[2(n+2)]=x_{1}[2 n+4]=x_{1}[2 n]=w_{1}[n]
$$

since $x_{1}[2 n]$ is periodic of period 2.
9.6 (a) i. If input is $x[n]$ the output is $y[n]=x[n] x[n-1]$, if input is $\alpha x[n], \alpha \neq 1$, the output is $\alpha^{2} x[n] x[n-1] \neq \alpha x[n] x[n-1]$ so system is non-linear.
If input is $x[n]$ the output is $y[n]=x[n] x[n-1]$, and if input is $x[n-1]$ the output is $x[n-1] x[n-2]=y[n-1]$ so system is time-invariant.
ii. Causal, $y[n]$ depends on present and past inputs and it is zero when the input is zero. Moreover, when $x[n]=0$ then $y[n]=0$.
If $x[n]$ is bounded for all n, then $|x[n]|<M$ and $|x[n-1]|<M$ and $|y[n]|=|x[n]| \mid x[n-$ $1] \mid<M^{2}$, so bounded. Yes, BIBO stable.
Indeed, if $x[n]=u[n]$ then
Non-linearity:

$$
\begin{aligned}
x[n] & =u[n] \Rightarrow y[n]=u[n] u[n-1]=u[n-1] \\
x_{1}[n] & =2 u[n] \Rightarrow y_{1}[n]=4 u[n-1] \neq 2 u[n-1]
\end{aligned}
$$

Time-invariance

$$
\begin{aligned}
x[n]=u[n] & \Rightarrow y[n]=u[n-1] \\
x_{1}[n]=u[n-1] & \Rightarrow y_{1}[n]=u[n-2]=y[n-1]
\end{aligned}
$$

(b) i. No, it is a modulation system as such LTV.
ii. Expressing $x[n]=\cos (2 \pi n / 8)$ its fundamental period is $N_{0}=8$. We have

$$
y[n+8]=x[n+8] \cos ((n+8) / 4)=x[n] \cos (n / 4+2) \neq y[n]
$$

since 2 cannot be expressed in terms of π, so $y[n]$ is not periodic. It will also be true for any multiple of 8 .
9.9 (a) If input is $\alpha x[n]$, output is $\sum_{k=n-2}^{n+4} \alpha x[k]=\alpha y[n]$, so system is linear. If input is $x_{1}[n]=x[n-1]$ the output is

$$
\begin{aligned}
y_{1}[n] & =\sum_{k=n-2}^{n+4} x_{1}[k]=\sum_{k=n-2}^{n+4} x[k-1] \text { let } m=k-1 \\
& =\sum_{m=n-3}^{n+3} x[m]=y[n-1]
\end{aligned}
$$

so the system is time-invariant.
(b) Non-causal since output depends on future values of input:

$$
y[n]=\sum_{k=n-2}^{n+4} x[k]=\sum_{k=n-2}^{n} x[k]+\sum_{k=n+1}^{n+4} x[k]
$$

If $|x[n]|<M$, i.e., bounded, then $y[n]$ is bounded, indeed

$$
|y[n]| \leq \sum_{k=n-2}^{n+4}|x[k]| \leq \sum_{k=n-2}^{n+4} M=7 M
$$

9.10 (a) Impulse response: using the difference equation

$$
h[n]=-0.5 h[n-1]+\delta[n]
$$

obtained when the input is $\delta[n]$ and the outputs is $h[n]$ (no initial conditions) we have

$$
\begin{aligned}
h[n]= & -0.5 h[n-1]+\delta[n] \\
= & -0.5(-0.5 h[n-2]+\delta[n-1])+\delta[n]=0.5^{2} h[n-2]-0.5 \delta[n-1]+\delta[n] \\
= & 0.5^{2}(-0.5 h[n-3]+\delta[n-2])-0.5 \delta[n-1]+\delta[n]=-0.5^{3} h[n-3] \\
& \left.+0.5^{2} \delta[n-2]\right)-0.5 \delta[n-1]+\delta[n]
\end{aligned}
$$

indicating that $h[n]=(-0.5)^{n} u[n]$.
(b) Writing $x[n]=\delta[n]+\delta[n-1]+\delta[n-2]$ the output is

$$
\begin{aligned}
y[n] & =h[n]+h[n-1]+h[n-2] \\
& =(-0.5)^{n} u[n]+(-0.5)^{n-1} n u[n-1]+(-0.5)^{n-2} u[n-2]
\end{aligned}
$$

Recursive solution of the difference equation gives the same result.
9.11 (a) The convolution integral gives

$$
y(t)=r(t)-r(t-2.5)-r(t-3.5)+r(t-6)
$$

See Fig. 9.2

Figure 9.2: Problem 11(a)
(b) If we discretize both $x[n]$ and $h[n]$ with $T_{s}=0.5$, i.e., $t=0.5 n$, we get

$$
\begin{aligned}
& x[n]= \begin{cases}1 & 0 \leq \frac{n}{2} \leq 3.5 \text { or } 0 \leq n \leq 7 \\
0 & \text { otherwise }\end{cases} \\
& h[n]= \begin{cases}1 & 0 \leq \frac{n}{2} \leq 2.5 \text { or } 0 \leq n \leq 5 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The convolution sum gives

$$
y[n]= \begin{cases}n+1 & 0 \leq n \leq 5 \\ 6 & n=6,7 \\ 6-(n-7) & 8 \leq n \leq 12 \\ 0 & \text { otherwise }\end{cases}
$$

Thus $y[n] / 6$ approximates the continuous convolution. Notice that the length of the convolution is length $x[n]+$ length of $h[n]=8+6-1=13$.
9.13 Discretization of differential equation:

$$
\begin{aligned}
& \frac{y(n T+T)-y(n T)}{T}+y(n T)=2 x(n T)+\frac{x(n T+T)-x(n T)}{T} \\
& \Rightarrow \quad y((n+1) T)=(1-T) y(n T)+(2 T-1) x(n T)+x((n+1) T)
\end{aligned}
$$

and letting $m=n+1$ we get

$$
y(m T)=(1-T) y((m-1) T)+(2 T-1) x((m-1) T)+x(m T)
$$

Figure 9.3 shows the block diagram when $T=1$.

Figure 9.3: Problem 13: block diagram of difference equation when $T=1$.
9.14 (a) We have

$$
\begin{aligned}
& e[n]=x[n]-y[n-1], \quad y[n]=2 e[n-1]=2 x[n-1]-2 y[n-2] \\
& \Rightarrow \quad y[n]+2 y[n-2]=2 x[n-1]
\end{aligned}
$$

(b) The impulse response is found by letting $x[n]=\delta[n]$, IC zero, and $y[n]=h[n]$. Recursively,

$$
\begin{aligned}
& h[n]=-2 h[n-2]+2 \delta[n-1] \\
& h[0]=0, \quad h[1]=2, \quad h[2]=0, \quad h[3]=-4, \quad h[4]=0, \quad h[5]=8, \cdots
\end{aligned}
$$

or $h[n]=2(-2)^{(n-1) / 2}$, n odd, 0 otherwise, which grows as n increases, so it is not absolutely summable, i.e., system is not BIBO stable.
9.15 (a) $x[n]=\delta[n]+\delta[n-1]+\delta[n-2]$ and $y[n]=\delta[n-1]+\delta[n-2]+\delta[n-3]$, and

$$
\text { length }(y[n])=\text { length }(x[n])+\text { length }(h[n])-1
$$

Thus length of $h[n]$ is $3-3+1=1$.
(b) Since the input is $x[n]=\delta[n]+\delta[n-1]+\delta[n-2]$ the output is $y[n]=h[n]+h[n-1]+h[n-2]$ but also $y[n]=\delta[n-1]+\delta[n-2]+\delta[n-3]$ so that

$$
\begin{aligned}
& y[0]=0=h[0] \\
& y[1]=1=h[1]+h[0] \\
& y[2]=1=h[2]+h[1]+h[0] \\
& y[3]=1=h[3]+h[2]+h[1]
\end{aligned}
$$

solving for the impulse response values we get $h[0]=0, h[1]=1-h[0]=1$ and the rest of the values are zero. Thus the length of $h[n]$ is 1 .
9.17 (a) For $N=4$ the length of the output $y[n]=$ length of $x[n]+$ length $h[n]-1=5+4-1=8$. For $N=4$, the convolution sum gives (see Fig. 9.4):

n	$y[n]$	n	$y[n]$
0,7	1	2,5	3
1,6	2	3,4	4

0 otherwise.

Figure 9.4: Problem 17: convolution sum $y[n]$ of $x[n]$ and $h[n]$
(b) The values of the convolution sum

$$
\begin{aligned}
& y[3]=\sum_{k=0}^{3} h[k] x[3-k]=x[3]+x[2]+x[1]+x[0]=3 \\
& y[6]=\sum_{k=0}^{6} h[k] x[6-k]=x[6]+x[5]+x[4]+x[3]=0
\end{aligned}
$$

can be obtained by letting $x[n]=u[n]-u[n-3]$ so that the second summation is zero as $x[n]=0$ for $n \geq 3$ and $h[n]=0$ for $n \geq 4$, and the first summation is 3 given that $x[3]=0$ and the other terms are one.
9.18 (a) Solving recursively the first difference equation $y[n]=0.5 y[n-1]+x[n]$, with $x[n]=\delta[n]$, IC zero:

$$
\begin{aligned}
y[0] & =\delta[0]=1 \\
y[1] & =0.5 \times 1+0=0.5 \\
& \vdots \\
y[n] & =0.5^{n}
\end{aligned}
$$

For the second difference equation $y[n]=0.25 y[n-2]+0.5 x[n-1]+x[n]$, with $x[n]=\delta[n]$, IC zero:

$$
\begin{aligned}
y[0] & =0+0+\delta[0]=1 \\
y[1] & =0+0.5 \delta[0]+0=0.5 \\
y[2] & =0.25+0+0=0.5^{2} \\
& \vdots \\
y[n] & =0.5^{n}
\end{aligned}
$$

The second equation is obtained by replacing $y[n-1]=0.5 y[n-2]+x[n-1]$ (calculated by changing n by $n-1$ in the first difference equation) into the first equation.
(b) Replacing $y[n-1]=0.5 y[n-2]+x[n-1]$ we get the previous second equation, then replacing $y[n-2]=0.5 y[n-3]+x[n-2]$ we get a new equation,

$$
y[n]=0.5^{3} y[n-3]+0.5^{2} x[n-2]+0.5 x[n-1]+x[n]
$$

and repeating this process we finally obtain

$$
y[n]=\sum_{k=0}^{\infty} 0.5^{k} x[n-k]
$$

which is the convolution sum of $h[n]=0.5^{n} u[n]$ (impulse response) and $x[n]$ which coincides with the response obtained above.
(c) For $x[n]=u[n]-u[n-11]$ the convolution sum is (do the convolution sum graphically to verify these results)

$$
y[n]= \begin{cases}0 & n<0 \\ \sum_{k=0}^{n} 0.5^{k} & 0 \leq n \leq 10 \\ \sum_{k=n-10}^{n} 0.5^{k} & n \geq 11\end{cases}
$$

For $0 \leq n \leq 10$ we get

$$
y[n]=\frac{1-0.5^{n+1}}{1-0.5}=2\left(1-0.5^{n+1}\right)
$$

for $n \geq 11$, letting $m=k-n+10$

$$
y[n]=\sum_{m=0}^{10} 0.5^{m+n-10}=0.5^{n-10} \times 2\left(1-0.5^{11}\right)
$$

As $n \rightarrow \infty$ we get $y[n] \rightarrow 0$.
(d) The maximum occurs at $n=10$ when $y[10]=2\left(1-0.5^{11}\right)$.
9.19 The convolution sum is

$$
\begin{aligned}
y[n] & =\sum_{m=0}^{n} x[m] h[n-m] \\
y[0] & =x[0] h[0]=1 \\
y[1] & =x[0] h[1]+x[1] h[0]=-1+1=0 \\
y[2] & =x[0] h[2]+x[1] h[1]+x[2] h[0]=1-1+1=1 \\
y[3] & =x[0] h[3]+x[1] h[2]+x[2] h[1]+x[3] h[0]=-1+1-1+0=-1 \\
y[4] & =x[0] h[4]+x[1] h[3]+x[2] h[2]+x[3] h[1]+x[4] h[0]=1-1+1+0+0=1 \\
y[n] & =x[0] h[n]+x[1] h[n-1]+x[2] h[n-2]=(-1)^{n}+(-1)^{n-1}+(-1)^{n-2}=(-1)^{n-2} n \geq 5
\end{aligned}
$$

9.25 (a) $y[n]$ depends on a future value of the input $x[n+1]$ so the system is non-causal.
(b) This can be done in two equivalent ways:
(i) If $x[n]$ is bounded, i.e., there is a value M such that $|x[n]|<M<\infty$, then

$$
|y[n]| \leq \frac{1}{3}(|x[n+1]|+|x[n]|+|x[n-1]|) \leq \frac{3 M}{3}=M \leq \infty
$$

or bounded, so that the system is BIBO stable.
(ii) System is BIBO stable if its impulse response is absolutely summable. If $x[n]=\delta[n]$ then

$$
h[n]=\frac{1}{3}(\delta[n+1]+\delta[n]+\delta[n-1])
$$

and

$$
\sum_{n}|h[n]|=|h[-1]|+|h[0]|+|h[1]|=1<\infty
$$

so the system is BIBO stable.
(c) The discrete-time signal is

$$
x[n]=\left.2 \cos (10 t)\right|_{t=n T_{s i}}= \begin{cases}2 \cos (10 n) & \text { when using } T_{s 1}=1 \\ 2 \cos (10 \pi n) & \text { when using } T_{s 2}=\pi\end{cases}
$$

For $T_{s 1}=1$, the frequency of $x[n]$ is $\omega_{0}=10$ which cannot be expressed as $2 \pi m / N$ for not canceling integers m and N, so $x[n]$ is then not periodic.
For $T_{s 2}=\pi$, the frequency of $x[n]$ is

$$
\omega_{0}=10 \pi=\frac{2 \pi m}{N}=\frac{2 \pi \times 5}{1}
$$

so that $x[n]$ in that case is periodic of period $N=1$.
(d) $y[n]$ is periodic as $x[n], x[n+1]$ and $x[n-1]$ are periodic of same period. The fundamental period of $y[n]$ is then $N=1$.
9.27 (a) If $x[n]=\delta[n]$ then $h[n]=\delta[n]-\delta[n-5]$. System is causal and BIBO stable.
(b) $x[n]=u[n]=\cos (0 n) u[n]$ has infinite energy, and the corresponding output is $y[n]=u[n]-$ $u[n-5]$ having finite energy. Notice the output has a finite support, as when $n>5$ then $y[n]=0$.
(c) When $x[n]=\sin (2 \pi n / 5) u[n]$, then the output is

$$
\begin{aligned}
y[n] & =x[n]-x[n-5]=\sin (2 \pi n / 5) u[n]-\sin (2 \pi(n-5) / 5) u[n-5] \\
& =\sin (2 \pi n / 5)(u[n]-u[n-5])
\end{aligned}
$$

which again has finite support and $y[n]=0$ for $n>5$. The energy of the output is finite, while that of the input is not.
(d) Since $x[n]=\left(e^{j \omega_{0} n}-e^{-j \omega_{0} n}\right) u[n] / 2 j$ and the system is causal, linear and time invariant, consider the response to $e^{j \omega_{0} n} u[n]$. The convolution sum, or response to $x_{1}[n]=e^{j \omega_{0} n} u[n] / 2 j$

$$
y_{1}[n]=\sum_{k=0}^{n} h[k] e^{j \omega_{0}(n-k)} /(2 j)
$$

given that $h[n]=\delta[n]-\delta[n-5]$, or $h[0]=1, h[5]=-1$ and the other values are zero, for $n \geq 5$ we have

$$
\begin{aligned}
y_{1}[n] & =\sum_{k=0}^{n} h[k] e^{j \omega_{0}(n-k)} /(2 j)=e^{j \omega_{0} n}\left(h[0]+h[5] e^{-j 5 \omega_{0}}\right) /(2 j) \\
& =e^{j \omega_{0} n}\left(1-e^{-j 5 \omega_{0}}\right) /(2 j)
\end{aligned}
$$

which can be made zero by letting $1-e^{-j 5 \omega_{0}}=0$ or for frequencies $\omega_{0}=2 \pi m / 5$ for $m=$ $0, \pm 1, \pm 2, \cdots$. Similarly when the input is $e^{-j \omega_{0} n} u[n]$. Thus for those frequencies the output is of finite support, i.e., having finite energy. For any other frequencies the output is not zero after $n \geq 5$, and it is not guaranteed the finite support or the finite energy.

