
Chapter 5

Frequency Analysis: the Fourier
Transform

5.1 Basic Problems

5.1 (a) The Laplace transforms are

x1(t) = e
�2t

u(t) , X1(s) =
1

s + 2
� > �2

x2(t) = r(t) , X2(s) =
1

s2
� > 0

x3(t) = te
�2t

u(t) , X3(s) =
1

(s + 2)2
� > �2

(b) The Laplace transforms of x1(t) and of x3(t) have regions of convergence containing the j⌦-axis,
and so we can find their Fourier transforms from their Laplace transforms by letting s = j⌦

(c) The Fourier transforms of x1(t) and x3(t) are

X1(⌦) =
1

2 + j⌦

X3(⌦) =
1

(2 + j⌦)2

1
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Chaparro — Signals and Systems using MATLAB 5.2

5.2 (a) In this case we are using the duality of the Fourier transforms so that the Fourier transform of the sinc
is a pulse of magnitude A and cut-off frequency ⌦0 which we will need to determine.

The inverse Fourier transform is

x(t) =
1

2⇡

Z 1

�1
A[u(⌦ + ⌦0) � u(⌦ � ⌦0)]e

j⌦t
d⌦

=
A

2⇡

Z ⌦0

�⌦0

e
j⌦t

d⌦

=
A

⇡t
sin ⌦0t

so that A = ⇡ and ⌦0 = 1, i.e.,

sin(t)

t
, ⇡[u(⌦ + 1) � u(⌦ � 1)]

(b) The Fourier transform of x1(t) = u(t + 0.5) � u(t � 0.5) is

X1(⌦) =


1

s
[e0.5s � e

�0.5s]

�

s=j⌦

=
sin(0.5⌦)

0.5⌦

Using the duality property we have:

x1(t) = u(t + 0.5) � u(t � 0.5) , X1(⌦) =
sin(⌦/2)

⌦/2

X1(t) =
sin(t/2)

t/2
, 2⇡[u(⌦ + 0.5) � u(⌦ � 0.5)]

using the fact that x1(t) is even. Then using the scaling property

X1(2t) =
sin(t)

t
, 2⇡

2
[u((⌦/2) + 0.5) � u((⌦/2) � 0.5)]

, ⇡[u(⌦ + 1) � u(⌦ � 1)]

so x(t) = X1(2t) = sin(t)/t is the inverse Fourier transform of X(⌦) = ⇡[u(⌦ + 1) � u(⌦ � 1)]

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.3 (a) The signal x(t) is even while y(t) is odd.
(b) The Fourier transform of x(t) is

X(⌦) =

Z 1

�1
e
�|t|

e
�j⌦t

dt

=

Z 1

�1
e
�|t| cos(⌦t)dt � j

Z 1

�1
e
�|t| sin(⌦t)dt

= 2

Z 1

0
e
�|t| cos(⌦t)dt

this is because the imaginary part is the integral of an odd function which is zero. Since cos(.) is an even
function

X(�⌦) = X(⌦)

The Fourier transform X(⌦) is

X(⌦) = 2

Z 1

0
e
�t

e
j⌦t + e

�j⌦t

2
dt

=

Z 1

0
e
�(1�j⌦)t

dt +

Z 1

0
e
�(1+j⌦)t

dt

=
1

1 � j⌦
+

1

1 + j⌦
=

2

1 + ⌦2

which is real-valued.
(c) For y(t), odd function, its Fourier transform is

Y (⌦) =

Z 1

�1
y(t)e�j⌦t

dt

= �j

Z 1

�1
y(t) sin(⌦t)dt

because y(t) cos(⌦t) is an odd function and its integral is zero. The Y (⌦) is odd since

Y (�⌦) = �j

Z 1

�1
y(t) sin(�⌦t)dt

= �Y (⌦)

since the sine is odd.
(d) Let’s use the Laplace transform to find the Fourier transform of y(t):

Y (s) =
1

s + 1
� 1

�s + 1

with a region of convergence �1 < � < 1, which contains the j⌦-axis. So

Y (⌦) = Y (s) |s=j⌦=
1

j⌦ + 1
� 1

�j⌦ + 1
=

�2j⌦

1 + ⌦2

Copyright 2014, Elsevier, Inc. All rights reserved.
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which as expected is purely imaginary.
Check: Let z(t) = x(t) + y(t) = 2e

�t
u(t) which has a Fourier transform

Z(⌦) =
2

1 + j⌦
=

2(1 � j⌦)

1 + ⌦2
= X(⌦) + Y (⌦)

(f) If a signal is represented as x(t) = xe(t) + xo(t) then

X(⌦) = Xe(⌦) + Xo(⌦)

where the first is a cosine transform and the second a sine transform.

Copyright 2014, Elsevier, Inc. All rights reserved.

219



Chaparro — Signals and Systems using MATLAB 5.6

5.5 (a) x1(t) = �x(t + 1) + x(t � 1), time–shift property

X1(⌦) = X(⌦)(�e
j⌦ + e

�j⌦) = �2jX(⌦) sin(⌦)

(b) x2(t) = 2 sin(t)/t by duality

X2(⌦) = 2⇡[u(�⌦ + 1) � u(�⌦ � 1)] = 2⇡[u(⌦ + 1) � u(⌦ � 1)]

by symmetry of x(t).

(c) Compression

x3(t) = 2x(2t) = 2[u(2t + 1) � u(2t � 1)] = 2[u(t + 0.5) � u(t � 0.5)]

X3(⌦) = 2
X(⌦/2)

2
= X(⌦/2)

(d) Modulation: x4(t) = cos(0.5⇡t)x(t) so

X4(⌦) = 0.5[X(⌦ + 0.5⇡) + X(⌦ � 0.5⇡)]

(e) x5(t) = X(t) so that by duality

X5(⌦) = 2⇡x(�⌦) = 2⇡[u(�⌦ + 1) � u(�⌦ � 1)] = 2⇡x(⌦)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.6 (a) x(t) = cos(t)[u(t) � u(t � 1)] = cos(t)p(t), so

X(⌦) = 0.5[P (⌦ + 1) + P (⌦ � 1)]

where

P (⌦) =
e
�s/2(es/2 � e

�s/2)

s
|s=j⌦ = 2e

�j⌦/2 sin(⌦/2)

⌦

(b) y(t) = x(2t) = cos(2t)p(2t) = cos(2t)[u(t) � u(t � 0.5)], so

Y (⌦) = 0.5[P1(⌦ + 2) + P1(⌦ � 2)]

where

P1(⌦) = F [u(t) � u(t � 0.5)] = 2e
�j⌦/4 sin(⌦/4)

⌦

z(t) = x(t/2) = cos(t/2)p(t/2) = cos(t/2)[u(t) � u(t � 2)] = cos(t/2)p2(t) so

Z(⌦) = 0.5[P2(⌦ + 0.5) + P2(⌦ � 0.5)]

P2(⌦) = F [u(t) � u(t � 2)] = 2e�j⌦ sin(⌦)

⌦

Using

P1(⌦) = 0.5P (⌦/2)

P2(⌦) = 2P (2⌦)

we have

X(⌦) = 0.5[P (⌦ + 1) + P (⌦ � 1)]

Y (⌦) = 0.5[0.5P ((⌦/2) + 1) + 0.5P ((⌦/2) � 1)] = 0.5X(⌦/2)

Z(⌦) = 0.5[2P (2⌦ + 1) + 2P (2⌦ � 1)] = 2X(2⌦)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.7 F [�(t � ⌧)] = L[�(t � ⌧)]s=j⌦ = e
�j⌦⌧ so

(a) By linearity and time–shift

F [�(t � 1) + �(t + 1)] = 2 cos(⌦)

(b) By duality

0.5[�(t � ⌧) + �(t + ⌧)] $ cos(⌦⌧)

cos(⌦0t) $ ⇡[�(⌦ + ⌦0) + �(⌦ � ⌦0)]

by letting ⌧ = ⌦0 in the second equation.

(c) Considering
F [�(t � 1) � �(t + 1)] = 2j sin(⌦),

by duality

�0.5j[�(t � ⌧) + �(t + ⌧)] $ sin(⌦⌧)

sin(⌦0t) $ � j⇡[�(⌦ + ⌦0) + �(⌦ + ⌦0)]

by letting ⌧ = ⌦0 in the second equation.

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.14 (a) Let X(⌦) = A[u(⌦ + ⌦0) � u(⌦ � ⌦0)] its inverse Fourier transform is

x(t) =
1

2⇡

Z ⌦0

�⌦0

Ae
j⌦t

d⌦ =
A sin(⌦0t)

⇡t

so A = 1, ⌦0 = 0.5 and X(⌦) = u(⌦ + 0.5) � u(⌦ � 0.5).

(b) Y (⌦) = H(⌦)X(⌦) = X(⌦) so that y(t) = (x ⇤ x)(t) = x(t), or convolution of a sinc function
with itself is a sinc.

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.17 (a) Impulse response

h(t) =
1

2⇡

Z 2

�2
1e

j\H(j⌦)
e
j⌦t

d⌦ =
1

2⇡

Z 2

0
e
j(⌦t�⇡/2)

d⌦ +
1

2⇡

Z 0

�2
e
j(⌦t+⇡/2)

d⌦

=
�j

2⇡jt
(ej2t � 1) � j

2⇡jt
(e�j2t � 1) =

1 � cos(2t)

⇡t

(b) The frequency components of x(t) with harmonic frequencies bigger than 2 are filtered out so

yss(t) = 2|H(j1.5)| cos(1.5t + \H(j1.5)) = 2 cos(1.5t � ⇡/2) = 2 sin(1.5t)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.18 (a) Plot of X(⌦) as function of ⌦:

�⇡ ⇡

X(⌦)

⌦

1

Figure 5.3: Problem 18

(b)

x(0) =
1

2⇡

Z
⇡

�⇡

|⌦|
⇡

d⌦ =
2

2⇡

Z
⇡

0

⌦

⇡
d⌦ =

1

2
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5.19 (a) Poles are roots of D(s) = s
2 + 2s + 2 = (s + 1)2 + 1 = 0 or

s1,2 = �1 ± j1

the zero is s = 0. It is a band-pass filter with center frequency around 1. Its magnitude response is
using vectors from the zero and the poles to the point in the j⌦–axis where are finding the frequency
response:

⌦ |H(j⌦)|
0 0 (zero at zero)
1

p
5(1)/[(1)(

p
4 + 1)] = 1

1 0 (vectors of two poles and zero have infinite lengths)

(b) Impulse response

H(s) =

p
5(s + 1)

(s + 1)2 + 1
�

p
5

(s + 1)2 + 1

h(t) =
p

5e
�t (cos(t) � sin(t)) u(t) =

p
5e

�t
p

2 cos(t + ⇡/4)u(t)

=
p

10e
�t cos(t + ⇡/4)u(t)

(c) The steady state response corresponding to x(t) = B + cos(⌦t) is

y(t) = B|H(j0)| + |H(j⌦0)| cos(⌦0 + \H(j⌦0))

= |H(j⌦0)| cos(⌦0 + \H(j⌦0))

for ⌦0 to be determined by looking at frequencies for which

|H(j⌦0)| =

p
5⌦0p

(2 � ⌦2
0)

2 + 4⌦2
0

= 1 or

5⌦2
0 = 4 � 4⌦2

0 + ⌦4
0 + 4⌦2

0 ) ⌦4
0 � 5⌦2

0 + 4 = (⌦2
0 � 4)((⌦2

0 � 1) = 0

giving values of
⌦0 = ±2, ± 1

so we have that when ⌦ = 1 or 2 the dc bias is filtered out and the cosine has a magnitude of 1.
The corresponding phases are using the pole and zero vectors

⌦0 = 1 ) \H(j⌦0) = ⇡/2 � 0 � tan�1(2)

⌦0 = 2 ) \H(j⌦0) = ⇡/2 � tan�1(1) � tan�1(3)

Copyright 2014, Elsevier, Inc. All rights reserved.
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5.22 (a) According to the eigenvalue property for x(t) = e
j⌦t, �1 < ⌦ < 1, the output in the steady-state

would be y(t) = e
j⌦t

H(j⌦) so that the differential equation gives

j⌦e
j⌦t

H(j⌦) = �e
j⌦t

H(j⌦) + e
j⌦t

giving H(j⌦) =
1

1 + j⌦

|H(j⌦)| =
1p

1 + ⌦2
, \H(j⌦) = � tan�1(⌦)

⌦

|Y (⌦)|
1

1�1

0.707

Figure 5.4: Problem 22

(b) The magnitude response indicates the filter is a low-pass filter, in particular

⌦ |H(j⌦)| \H(j⌦)

0 1 0

1 1p
2

�⇡/4

1 0 �⇡/2

(c) The Fourier transform of x(t) is X(⌦) = u(⌦ + 1) � u(⌦ � 1) so that the Fourier transform of the
output is

Y (⌦) = X(⌦)H(j⌦)

with magnitude response as in Fig. 5.4

Copyright 2014, Elsevier, Inc. All rights reserved.
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