Chapter 5

Frequency Analysis: the Fourier Transform

5.1 Basic Problems

5.1 (a) The Laplace transforms are

$$
\begin{aligned}
& x_{1}(t)=e^{-2 t} u(t) \quad \Leftrightarrow \quad X_{1}(s)=\frac{1}{s+2} \quad \sigma>-2 \\
& x_{2}(t)=r(t) \quad \Leftrightarrow \quad X_{2}(s)=\frac{1}{s^{2}} \quad \sigma>0 \\
& x_{3}(t)=t e^{-2 t} u(t) \quad \Leftrightarrow \quad X_{3}(s)=\frac{1}{(s+2)^{2}} \quad \sigma>-2
\end{aligned}
$$

(b) The Laplace transforms of $x_{1}(t)$ and of $x_{3}(t)$ have regions of convergence containing the $j \Omega$-axis, and so we can find their Fourier transforms from their Laplace transforms by letting $s=j \Omega$
(c) The Fourier transforms of $x_{1}(t)$ and $x_{3}(t)$ are

$$
\begin{aligned}
& X_{1}(\Omega)=\frac{1}{2+j \Omega} \\
& X_{3}(\Omega)=\frac{1}{(2+j \Omega)^{2}}
\end{aligned}
$$

5.2 (a) In this case we are using the duality of the Fourier transforms so that the Fourier transform of the sinc is a pulse of magnitude A and cut-off frequency Ω_{0} which we will need to determine.

The inverse Fourier transform is

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} A\left[u\left(\Omega+\Omega_{0}\right)-u\left(\Omega-\Omega_{0}\right)\right] e^{j \Omega t} d \Omega \\
& =\frac{A}{2 \pi} \int_{-\Omega_{0}}^{\Omega_{0}} e^{j \Omega t} d \Omega \\
& =\frac{A}{\pi t} \sin \Omega_{0} t
\end{aligned}
$$

so that $A=\pi$ and $\Omega_{0}=1$, i.e.,

$$
\frac{\sin (t)}{t} \Leftrightarrow \pi[u(\Omega+1)-u(\Omega-1)]
$$

(b) The Fourier transform of $x_{1}(t)=u(t+0.5)-u(t-0.5)$ is

$$
X_{1}(\Omega)=\left[\frac{1}{s}\left[e^{0.5 s}-e^{-0.5 s}\right]\right]_{s=j \Omega}=\frac{\sin (0.5 \Omega)}{0.5 \Omega}
$$

Using the duality property we have:

$$
\begin{aligned}
x_{1}(t)=u(t+0.5)-u(t-0.5) & \Leftrightarrow \quad X_{1}(\Omega)=\frac{\sin (\Omega / 2)}{\Omega / 2} \\
X_{1}(t)=\frac{\sin (t / 2)}{t / 2} & \Leftrightarrow \quad 2 \pi[u(\Omega+0.5)-u(\Omega-0.5)]
\end{aligned}
$$

using the fact that $x_{1}(t)$ is even. Then using the scaling property

$$
\begin{aligned}
X_{1}(2 t)=\frac{\sin (t)}{t} & \Leftrightarrow \quad \frac{2 \pi}{2}[u((\Omega / 2)+0.5)-u((\Omega / 2)-0.5)] \\
& \Leftrightarrow \quad \pi[u(\Omega+1)-u(\Omega-1)]
\end{aligned}
$$

so $x(t)=X_{1}(2 t)=\sin (t) / t$ is the inverse Fourier transform of $X(\Omega)=\pi[u(\Omega+1)-u(\Omega-1)]$
5.3 (a) The signal $x(t)$ is even while $y(t)$ is odd.
(b) The Fourier transform of $x(t)$ is

$$
\begin{aligned}
X(\Omega) & =\int_{-\infty}^{\infty} e^{-|t|} e^{-j \Omega t} d t \\
& =\int_{-\infty}^{\infty} e^{-|t|} \cos (\Omega t) d t-j \int_{-\infty}^{\infty} e^{-|t|} \sin (\Omega t) d t \\
& =2 \int_{0}^{\infty} e^{-|t|} \cos (\Omega t) d t
\end{aligned}
$$

this is because the imaginary part is the integral of an odd function which is zero. Since $\cos ($.$) is an even$ function

$$
X(-\Omega)=X(\Omega)
$$

The Fourier transform $X(\Omega)$ is

$$
\begin{aligned}
X(\Omega) & =2 \int_{0}^{\infty} e^{-t} \frac{e^{j \Omega t}+e^{-j \Omega t}}{2} d t \\
& =\int_{0}^{\infty} e^{-(1-j \Omega) t} d t+\int_{0}^{\infty} e^{-(1+j \Omega) t} d t \\
& =\frac{1}{1-j \Omega}+\frac{1}{1+j \Omega}=\frac{2}{1+\Omega^{2}}
\end{aligned}
$$

which is real-valued.
(c) For $y(t)$, odd function, its Fourier transform is

$$
\begin{aligned}
Y(\Omega) & =\int_{-\infty}^{\infty} y(t) e^{-j \Omega t} d t \\
& =-j \int_{-\infty}^{\infty} y(t) \sin (\Omega t) d t
\end{aligned}
$$

because $y(t) \cos (\Omega t)$ is an odd function and its integral is zero. The $Y(\Omega)$ is odd since

$$
\begin{aligned}
Y(-\Omega) & =-j \int_{-\infty}^{\infty} y(t) \sin (-\Omega t) d t \\
& =-Y(\Omega)
\end{aligned}
$$

since the sine is odd.
(d) Let's use the Laplace transform to find the Fourier transform of $y(t)$:

$$
Y(s)=\frac{1}{s+1}-\frac{1}{-s+1}
$$

with a region of convergence $-1<\sigma<1$, which contains the $j \Omega$-axis. So

$$
Y(\Omega)=\left.Y(s)\right|_{s=j \Omega}=\frac{1}{j \Omega+1}-\frac{1}{-j \Omega+1}=\frac{-2 j \Omega}{1+\Omega^{2}}
$$

Copyright 2014, Elsevier, Inc. All rights reserved.
which as expected is purely imaginary.
Check: Let $z(t)=x(t)+y(t)=2 e^{-t} u(t)$ which has a Fourier transform

$$
Z(\Omega)=\frac{2}{1+j \Omega}=\frac{2(1-j \Omega)}{1+\Omega^{2}}=X(\Omega)+Y(\Omega)
$$

(f) If a signal is represented as $x(t)=x_{e}(t)+x_{o}(t)$ then

$$
X(\Omega)=X_{e}(\Omega)+X_{o}(\Omega)
$$

where the first is a cosine transform and the second a sine transform.
5.5 (a) $x_{1}(t)=-x(t+1)+x(t-1)$, time-shift property

$$
X_{1}(\Omega)=X(\Omega)\left(-e^{j \Omega}+e^{-j \Omega}\right)=-2 j X(\Omega) \sin (\Omega)
$$

(b) $x_{2}(t)=2 \sin (t) / t$ by duality

$$
X_{2}(\Omega)=2 \pi[u(-\Omega+1)-u(-\Omega-1)]=2 \pi[u(\Omega+1)-u(\Omega-1)]
$$

by symmetry of $x(t)$.
(c) Compression

$$
\begin{gathered}
x_{3}(t)=2 x(2 t)=2[u(2 t+1)-u(2 t-1)]=2[u(t+0.5)-u(t-0.5)] \\
X_{3}(\Omega)=2 \frac{X(\Omega / 2)}{2}=X(\Omega / 2)
\end{gathered}
$$

(d) Modulation: $x_{4}(t)=\cos (0.5 \pi t) x(t)$ so

$$
X_{4}(\Omega)=0.5[X(\Omega+0.5 \pi)+X(\Omega-0.5 \pi)]
$$

(e) $x_{5}(t)=X(t)$ so that by duality

$$
X_{5}(\Omega)=2 \pi x(-\Omega)=2 \pi[u(-\Omega+1)-u(-\Omega-1)]=2 \pi x(\Omega)
$$

5.6 (a) $x(t)=\cos (t)[u(t)-u(t-1)]=\cos (t) p(t)$, so

$$
X(\Omega)=0.5[P(\Omega+1)+P(\Omega-1)]
$$

where

$$
P(\Omega)=\left.\frac{e^{-s / 2}\left(e^{s / 2}-e^{-s / 2}\right)}{s}\right|_{s=j \Omega}=2 e^{-j \Omega / 2} \frac{\sin (\Omega / 2)}{\Omega}
$$

(b) $y(t)=x(2 t)=\cos (2 t) p(2 t)=\cos (2 t)[u(t)-u(t-0.5)]$, so

$$
Y(\Omega)=0.5\left[P_{1}(\Omega+2)+P_{1}(\Omega-2)\right]
$$

where

$$
P_{1}(\Omega)=\mathcal{F}[u(t)-u(t-0.5)]=2 e^{-j \Omega / 4} \frac{\sin (\Omega / 4)}{\Omega}
$$

$z(t)=x(t / 2)=\cos (t / 2) p(t / 2)=\cos (t / 2)[u(t)-u(t-2)]=\cos (t / 2) p_{2}(t)$ so

$$
\begin{array}{r}
Z(\Omega)=0.5\left[P_{2}(\Omega+0.5)+P_{2}(\Omega-0.5)\right] \\
P_{2}(\Omega)=\mathcal{F}[u(t)-u(t-2)]=2 e^{-j \Omega} \frac{\sin (\Omega)}{\Omega}
\end{array}
$$

Using

$$
\begin{aligned}
& P_{1}(\Omega)=0.5 P(\Omega / 2) \\
& P_{2}(\Omega)=2 P(2 \Omega)
\end{aligned}
$$

we have

$$
\begin{aligned}
X(\Omega) & =0.5[P(\Omega+1)+P(\Omega-1)] \\
Y(\Omega) & =0.5[0.5 P((\Omega / 2)+1)+0.5 P((\Omega / 2)-1)]=0.5 X(\Omega / 2) \\
Z(\Omega) & =0.5[2 P(2 \Omega+1)+2 P(2 \Omega-1)]=2 X(2 \Omega)
\end{aligned}
$$

5.7 $\mathcal{F}[\delta(t-\tau)]=\mathcal{L}[\delta(t-\tau)]_{s=j \Omega}=e^{-j \Omega \tau}$ so
(a) By linearity and time-shift

$$
\mathcal{F}[\delta(t-1)+\delta(t+1)]=2 \cos (\Omega)
$$

(b) By duality

$$
\begin{array}{rll}
0.5[\delta(t-\tau)+\delta(t+\tau)] & \leftrightarrow & \cos (\Omega \tau) \\
\cos \left(\Omega_{0} t\right) & \leftrightarrow & \pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega-\Omega_{0}\right)\right]
\end{array}
$$

by letting $\tau=\Omega_{0}$ in the second equation.
(c) Considering

$$
\mathcal{F}[\delta(t-1)-\delta(t+1)]=2 j \sin (\Omega)
$$

by duality

$$
\begin{aligned}
&-0.5 j[\delta(t-\tau)+\delta(t+\tau)] \leftrightarrow \\
& \sin (\Omega \tau) \\
& \sin \left(\Omega_{0} t\right) \leftrightarrow
\end{aligned}-j \pi\left[\delta\left(\Omega+\Omega_{0}\right)+\delta\left(\Omega+\Omega_{0}\right)\right]
$$

by letting $\tau=\Omega_{0}$ in the second equation.
5.14 (a) Let $X(\Omega)=A\left[u\left(\Omega+\Omega_{0}\right)-u\left(\Omega-\Omega_{0}\right)\right]$ its inverse Fourier transform is

$$
x(t)=\frac{1}{2 \pi} \int_{-\Omega_{0}}^{\Omega_{0}} A e^{j \Omega t} d \Omega=\frac{A \sin \left(\Omega_{0} t\right)}{\pi t}
$$

so $A=1, \Omega_{0}=0.5$ and $X(\Omega)=u(\Omega+0.5)-u(\Omega-0.5)$.
(b) $Y(\Omega)=H(\Omega) X(\Omega)=X(\Omega)$ so that $y(t)=(x * x)(t)=x(t)$, or convolution of a sinc function with itself is a sinc.
5.17 (a) Impulse response

$$
\begin{aligned}
h(t) & =\frac{1}{2 \pi} \int_{-2}^{2} 1 e^{j \angle H(j \Omega)} e^{j \Omega t} d \Omega=\frac{1}{2 \pi} \int_{0}^{2} e^{j(\Omega t-\pi / 2)} d \Omega+\frac{1}{2 \pi} \int_{-2}^{0} e^{j(\Omega t+\pi / 2)} d \Omega \\
& =\frac{-j}{2 \pi j t}\left(e^{j 2 t}-1\right)-\frac{j}{2 \pi j t}\left(e^{-j 2 t}-1\right)=\frac{1-\cos (2 t)}{\pi t}
\end{aligned}
$$

(b) The frequency components of $x(t)$ with harmonic frequencies bigger than 2 are filtered out so

$$
y_{s s}(t)=2|H(j 1.5)| \cos (1.5 t+\angle H(j 1.5))=2 \cos (1.5 t-\pi / 2)=2 \sin (1.5 t)
$$

5.18 (a) Plot of $X(\Omega)$ as function of Ω :

Figure 5.3: Problem 18
(b)

$$
x(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{|\Omega|}{\pi} d \Omega=\frac{2}{2 \pi} \int_{0}^{\pi} \frac{\Omega}{\pi} d \Omega=\frac{1}{2}
$$

5.19 (a) Poles are roots of $D(s)=s^{2}+2 s+2=(s+1)^{2}+1=0$ or

$$
s_{1,2}=-1 \pm j 1
$$

the zero is $s=0$. It is a band-pass filter with center frequency around 1 . Its magnitude response is using vectors from the zero and the poles to the point in the $j \Omega$-axis where are finding the frequency response:

$$
\begin{array}{ll}
\Omega & |H(j \Omega)| \\
0 & 0 \text { (zero at zero) } \\
1 & \sqrt{5}(1) /[(1)(\sqrt{4+1})]=1 \\
\infty & 0 \text { (vectors of two poles and zero have infinite lengths) }
\end{array}
$$

(b) Impulse response

$$
\begin{aligned}
H(s) & =\frac{\sqrt{5}(s+1)}{(s+1)^{2}+1}-\frac{\sqrt{5}}{(s+1)^{2}+1} \\
h(t) & =\sqrt{5} e^{-t}(\cos (t)-\sin (t)) u(t)=\sqrt{5} e^{-t} \sqrt{2} \cos (t+\pi / 4) u(t) \\
& =\sqrt{10} e^{-t} \cos (t+\pi / 4) u(t)
\end{aligned}
$$

(c) The steady state response corresponding to $x(t)=B+\cos (\Omega t)$ is

$$
\begin{aligned}
y(t) & =B|H(j 0)|+\left|H\left(j \Omega_{0}\right)\right| \cos \left(\Omega_{0}+\angle H\left(j \Omega_{0}\right)\right) \\
& =\left|H\left(j \Omega_{0}\right)\right| \cos \left(\Omega_{0}+\angle H\left(j \Omega_{0}\right)\right)
\end{aligned}
$$

for Ω_{0} to be determined by looking at frequencies for which

$$
\begin{aligned}
& \left|H\left(j \Omega_{0}\right)\right|=\frac{\sqrt{5} \Omega_{0}}{\sqrt{\left(2-\Omega_{0}^{2}\right)^{2}+4 \Omega_{0}^{2}}}=1 \quad \text { or } \\
& 5 \Omega_{0}^{2}=4-4 \Omega_{0}^{2}+\Omega_{0}^{4}+4 \Omega_{0}^{2} \Rightarrow \quad \Omega_{0}^{4}-5 \Omega_{0}^{2}+4=\left(\Omega_{0}^{2}-4\right)\left(\left(\Omega_{0}^{2}-1\right)=0\right.
\end{aligned}
$$

giving values of

$$
\Omega_{0}= \pm 2, \quad \pm 1
$$

so we have that when $\Omega=1$ or 2 the dc bias is filtered out and the cosine has a magnitude of 1 . The corresponding phases are using the pole and zero vectors

$$
\begin{aligned}
& \Omega_{0}=1 \quad \Rightarrow \quad \angle H\left(j \Omega_{0}\right)=\pi / 2-0-\tan ^{-1}(2) \\
& \Omega_{0}=2 \quad \Rightarrow \quad \angle H\left(j \Omega_{0}\right)=\pi / 2-\tan ^{-1}(1)-\tan ^{-1}(3)
\end{aligned}
$$

5.22 (a) According to the eigenvalue property for $x(t)=e^{j \Omega t},-\infty<\Omega<\infty$, the output in the steady-state would be $y(t)=e^{j \Omega t} H(j \Omega)$ so that the differential equation gives

$$
\begin{aligned}
& j \Omega e^{j \Omega t} H(j \Omega)=-e^{j \Omega t} H(j \Omega)+e^{j \Omega t} \\
& \text { giving } H(j \Omega)=\frac{1}{1+j \Omega} \\
& \qquad H(j \Omega) \left\lvert\,=\frac{1}{\sqrt{1+\Omega^{2}}}\right., \angle H(j \Omega)=-\tan ^{-1}(\Omega)
\end{aligned}
$$

Figure 5.4: Problem 22
(b) The magnitude response indicates the filter is a low-pass filter, in particular

Ω	$\|H(j \Omega)\|$	$\angle H(j \Omega)$
0	1	0
1	$\frac{1}{\sqrt{2}}$	$-\pi / 4$
∞	0	$-\pi / 2$

(c) The Fourier transform of $x(t)$ is $X(\Omega)=u(\Omega+1)-u(\Omega-1)$ so that the Fourier transform of the output is

$$
Y(\Omega)=X(\Omega) H(j \Omega)
$$

with magnitude response as in Fig. 5.4

