4.2 (a) Replacing $x(\tau)=e^{j \Omega_{0} \tau}$ in the integral for the averager we get

$$
\begin{aligned}
\frac{1}{T} \int_{t-T}^{t} e^{j \Omega_{0} \tau} d \tau & =\frac{1}{T} \frac{e^{j \Omega_{0} t}-e^{j \Omega_{0}(t-T)}}{j \Omega_{0}} \\
& =e^{j \Omega_{0} t}\left[\frac{1-e^{-j \Omega_{0} T}}{j \Omega_{0} T}\right]
\end{aligned}
$$

where according to the eigenfunction property $H\left(j \Omega_{0}\right)$, the frequency response of the system for Ω_{0}, is the term in the square brackets.
(b) By a change of variable, $\sigma=t-\tau$, the equation for the averager is

$$
y(t)=\frac{1}{T} \int_{0}^{T} x(t-\sigma) d \sigma
$$

which is a convolution integral with impulse response $h(t)=(1 / T)[u(t)-u(t-T)]$. The transfer function of the system is $H(s)=(1 / s T)\left[1-e^{-s T}\right]$ and if we let $s=j \Omega_{0}$ we get the above response.
4.4 (a) $x(t)$ is a train of pulses with $T_{0}=2 \pi$ and $\Omega_{0}=1$. The Fourier series coefficients are

$$
\begin{aligned}
X_{0} & =0 \text { by symmetry in a period } \\
X_{k} & =\frac{1}{2 \pi}\left[\int_{-\pi}^{0}(-1) e^{-j k t} d t+\int_{0}^{\pi}(1) e^{-j k t} d t\right]=\frac{1}{2 \pi} \int_{0}^{\pi}\left(e^{-j k t}-e^{j k t}\right) d t \\
& =\frac{1}{2 \pi}\left[\frac{-\left(e^{-j \pi k}+e^{j \pi k}-2\right)}{j k}\right]=\frac{1-\cos (\pi k)}{j \pi k}
\end{aligned}
$$

since $\cos (\pi k)=(-1)^{k}$ we get that

$$
X_{k}= \begin{cases}0 & k \text { even } \\ -2 j /(\pi k) & k \text { odd }\end{cases}
$$

(b) Laplace transform of a period

$$
X_{1}(s)=\frac{1}{s}\left(1-2 e^{-\pi s}+e^{-2 \pi s}\right)=\frac{2 e^{-\pi s}}{s}(\cosh (\pi s)-1)
$$

so that the Fourier series coefficients are

$$
X_{k}=\left.\frac{1}{2 \pi} X_{1}(s)\right|_{s=j k}=j \frac{(-1)^{k+1}(\cos (\pi k)-1)}{\pi k}
$$

or

$$
X_{k}= \begin{cases}0 & k \text { even } \\ -2 j /(\pi k) & k \text { odd }\end{cases}
$$

4.6 (a) A period is $x_{1}(t)=t[u(t)-u(t-1)]$, its fundamental frequency $\Omega_{0}=2 \pi$, and its fundamental period $T_{0}=1$. See Fig. 4.2.
(b) Fourier series coefficients using the integral definition:

$$
\begin{aligned}
X_{k} & =\frac{1}{T_{0}} \int_{0}^{1} t e^{-j 2 \pi k t} d t=\left.\frac{e^{-j 2 \pi k t}}{(-j 2 \pi k)^{2}}(-j 2 \pi k t-1)\right|_{t=0} ^{1} \\
& =\frac{j 2 \pi k+1}{4 \pi^{2} k^{2}}-\frac{1}{4 \pi^{2} k^{2}}=\frac{j}{2 \pi k} \quad k \neq 0
\end{aligned}
$$

If $k=0$, the dc value X_{0} is

$$
X_{0}=\frac{1}{T_{0}} \int_{0}^{1} t d t=\left.\frac{t^{2}}{2}\right|_{t=0} ^{1}=0.5
$$

(c) Since $x_{1}(t)=t u(t)-t u(t-1)$ with Laplace transform

$$
\begin{aligned}
& X_{1}(s)=\frac{1}{s^{2}}-\mathcal{L}[t u(t-1)] \text { where } \\
& \mathcal{L}[t u(t-1)]=\mathcal{L}[(t-1) u(t-1)+u(t-1)]=\frac{e^{-s}}{s^{2}}+\frac{e^{-s}}{s}
\end{aligned}
$$

The FS coefficients are

$$
\begin{aligned}
X_{k} & =\left.\frac{1}{T_{0}} \mathcal{L}\left[x_{1}(t)\right]\right|_{s=j 2 \pi k}=\frac{1-e^{-s}}{s^{2}}-\left.\frac{e^{-s}}{s}\right|_{s=j 2 \pi k} \\
& =\frac{1-e^{-j 2 \pi k}}{(j 2 \pi k)^{2}}-\frac{e^{-j 2 \pi k}}{j 2 \pi k}=j \frac{1}{2 \pi k} \quad k \neq 0
\end{aligned}
$$

By inspection, the mean is $X_{0}=0.5$ (it cannot be calculated using the Laplace transform method). Notice that the zero-mean signal is odd so the X_{k} are purely imaginary.
(d) The derivative of $x(t)$ is (see bottom plot in Fig. 4.2):

$$
y(t)=\frac{d x(t)}{d t}=1-\sum_{k=-\infty}^{\infty} \delta(t-k)
$$

A period of it is given by $y_{1}(t)=u(t+0.5)-u(t-0.5)-\delta(t)$ and by the Laplace transform we have the Fourier series coefficients of $y(t)$ of fundamental period $T_{0}=1$ are

$$
\begin{aligned}
& Y_{k}=\left.\left(\frac{e^{0.5 s}-e^{-0.5 s}}{s}-1\right)\right|_{s=j 2 \pi k}=\frac{\sin (k \pi)}{k \pi}-1=-1 \text { and so } \\
& \text { using the derivative property } X_{k}=\frac{-1}{j 2 \pi k}=\frac{j}{2 \pi k} \quad k \neq 0
\end{aligned}
$$

which coincide with the ones obtained before. The X_{0} cannot be calculated from above.
Copyright 2014, Elsevier, Inc. All rights reserved.

Figure 4.2: Problem 6
4.7 (a) i. $T_{0}=2$ since $\Omega_{0}=\pi$.
ii. dc value $X_{0}=3 / 4$
iii. $x(t)$ is even, since the X_{k} are real.
iv. For the third harmonic

$$
\frac{3}{4+9 \pi^{2}}\left(e^{j 3 \pi t}+e^{-j 3 \pi t}\right)=\frac{6}{4+9 \pi^{2}} \cos (3 \pi t)
$$

then $A=6 /\left(4+9 \pi^{2}\right)$.
(b) Since $x(1)=1$ then letting $t=1$ we have

$$
\pi=4 \sum_{k=1}^{\infty} \frac{1}{2 k-1} \sin (2 k-1)
$$

It is also possible to find a similar expression for other values of t which are not in the discontinuities.
4.9 (a) If the periodic signal

$$
x(t)=\sum_{k} X_{k} e^{j \Omega_{0} k t}
$$

then

$$
y(t)=2 x(t)-3=\left(2 X_{0}-3\right)+\sum_{k \neq 0} 2 X_{k} e^{j \Omega_{0} k t}
$$

is also periodic of period T_{0} with Fourier coefficients

$$
Y_{k}= \begin{cases}2 X_{0}-3 & k=0 \\ 2 X_{k} & k \neq 0\end{cases}
$$

The signal

$$
\begin{aligned}
z(t) & =x(t-2)+x(t) \\
& =\sum_{k} X_{k} e^{j \Omega_{0} k(t-2)}+\sum_{k} X_{k} e^{j \Omega_{0} k t} \\
& =\sum_{k}\left[X_{k}\left(1+e^{-2 j \Omega_{0} k}\right)\right] e^{j \Omega_{0} k t}
\end{aligned}
$$

is periodic of period T_{0} and with Fourier series coefficients $Z_{k}=X_{k}\left(1+e^{-2 j \Omega_{0} k}\right)$. The signal

$$
w(t)=x(2 t)=\sum_{k} X_{k} e^{j \Omega_{0} k 2 t}=\sum_{m \text { even }} X_{m / 2} e^{j \Omega_{0} m t}
$$

is periodic of period $T_{0} / 2$, with Fourier series coefficients

$$
W_{k}= \begin{cases}X_{k / 2} & k \text { even } \\ 0 & \text { otherwise }\end{cases}
$$

4.10 (a) The sinusoidal components have periods $T_{1}=1$ and $T_{2}=1 / 2$ so that $T_{2} / T_{1}=1 / 2 . x(t)$ is periodic of fundamental period $T_{1}=2 T_{2}=1$ and $\Omega_{0}=2 \pi$.
(b) Expressing

$$
x(t)=0.5+2\left(e^{j \Omega_{0} t}+e^{-j \Omega_{0} t}\right)-4\left(e^{j 2 \Omega_{0} t}+e^{-j 2 \Omega_{0} t}\right)
$$

we get $X_{0}=0.5, X_{1}=X_{-1}^{*}=2$ and $X_{2}=X_{-2}^{*}=-4$ (See Fig. 4.3). Plotting $\left|X_{k}\right|^{2}$ indicates the power at each of the harmonics and it can be seen that the highest power is at $2 \Omega_{0}=4 \pi \mathrm{rad} / \mathrm{sec}$.

Figure 4.3: Problem 10
(c) Comparing

$$
y(t)=2-2 \sin (2 \pi t)=2+2 \cos (2 \pi t+\pi / 2)
$$

with the output obtained from applying the eigenfunction property of LTI:

$$
\begin{aligned}
y(t)= & 0.5|H(j 0)|+4|H(j 2 \pi)| \cos (2 \pi t+\angle H(j 2 \pi)) \\
& -8|H(j 4 \pi)| \cos (4 \pi t+\angle H(j 4 \pi))
\end{aligned}
$$

gives $H(j 0)=4, H(j 2 \pi)=0.5 e^{j \pi / 2}$ and $H(j 4 \pi)=0$.
which gives

$$
\begin{aligned}
& \sqrt{A^{2}+B^{2}}=1 \\
& \tan ^{-1}(B / A)=-2
\end{aligned}
$$

which are satisfied by $A=\cos (2)$ and $B=-\sin (2)$, indeed $A^{2}+B^{2}=(\cos (2))^{2}+(\sin (2))^{2}=1$ and $\tan ^{-1}(B / A)=\tan ^{-1}[-\tan (2)]=-2$. So that the Laplace transform

$$
\begin{aligned}
\mathcal{L}[\cos (t) u(t-2)] & =\mathcal{L}[(A \cos (t-2)+B \sin (t-2)) u(t-2)] \\
& =A \mathcal{L}[\cos (t-2) u(t-2)]+B \mathcal{L}[\sin (t-2) u(t-2)] \\
& =\frac{e^{-2 s}(\cos (2) s-\sin (2))}{s^{2}+1}
\end{aligned}
$$

which coincides with the result using the Laplace transform obtained before.
4.12 (a) The steady state is

$$
y(t)=4|H(j 2 \pi)| \cos (2 \pi t+\angle H(j 2 \pi))+8|H(j 3 \pi)| \cos (3 \pi t-\pi / 2+\angle H(j 3 \pi))
$$

so $H(j 2 \pi)=0.5 e^{j \pi}=-0.5, H(j 3 \pi)=0$. Nothing else can be learned about the filter from the input/output.
(b)

$$
\begin{aligned}
y_{s s}(t) & =\sum_{k=1}^{\infty} \frac{2}{k^{2}}|H(j 3 k / 2)| \cos (3 k t / 2+\angle H(j 3 k / 2)) \\
& =2|H(j 3 / 2)| \cos (3 t / 2+\angle H(j 3 / 2)) \\
& =2 \cos (3 t / 2-\pi / 2)
\end{aligned}
$$

since for frequencies bigger than 2 the magnitude response is zero.
4.13 (a) $g_{1}(t)=d x_{1}(t) / d t=-0.5[u(t)-u(t-1)]+0.5 \delta(t-1)$ so that

$$
g(t)=\sum_{k}(-0.5[u(t-k)-u(t-k-1)])+\sum_{k} 0.5 \delta(t-k-1)=-0.5+\sum_{k} 0.5 \delta(t-k-1)
$$

periodic of fundamental period $T_{0}=1$.
(b) Fourier series of $g(t)$ and $x(t)$

$$
\begin{aligned}
g(t) & =\frac{d x(t)}{d t}=\sum_{k=-\infty, \neq 0}^{\infty} X_{k} j k \Omega_{0} e^{j k \Omega_{0} t} \\
G_{k} & =j k \Omega_{0} X_{k} \quad \text { (derivative property) } \Omega_{0}=2 \pi \\
& =\left.G_{1}(s)\right|_{s=j k 2 \pi}=-0.5 \frac{1-e^{-s}}{s}+\left.0.5 e^{-s}\right|_{s=j k 2 \pi}=0.5 \quad \text { (definition) } \\
X_{k} & =\frac{0.5}{j k 2 \pi} k \neq 0
\end{aligned}
$$

The de term cannot be obtained from $g(t)$, it is calculated by

$$
X_{0}=\int_{0}^{1}(-0.5 t) d t=-0.25
$$

(c) Fourier series of

$$
y(t)=0.5+x(t)=0.25+\sum_{k=-\infty, \neq 0}^{\infty} X_{k} e^{j 2 \pi k t}
$$

the only difference is the dc value.
4.17 (a) The signal in $[0,1]$ is

$$
x_{1}(t)=u(t)-r(t)+r(t-1)
$$

so that ($T_{0}=1, \Omega_{0}=2 \pi$)

$$
\begin{aligned}
X_{k} & =\left[\frac{1}{s}-\frac{1}{s^{2}}\left(1-e^{-s}\right)\right]_{s=j 2 \pi k}=\left[\frac{1}{s}-\frac{e^{-s / 2}}{s^{2}}\left(e^{s / 2}-e^{-s / 2}\right)\right]_{s=j 2 \pi k} \\
& =\frac{-j}{2 \pi k}+\frac{e^{-j \pi}}{4 \pi^{2} k^{2}} 2 j \sin (\pi k)=\frac{-j}{2 \pi k} \quad k \neq 0
\end{aligned}
$$

and by inspection $X_{0}=0.5$. Thus the Fourier series for $x(t)$ is

$$
x(t)=0.5+\sum_{k=-\infty, \neq 0}^{\infty} \frac{-j}{2 \pi k} e^{j k 2 \pi t}
$$

(b) The derivative of $x(t)$ (from the figure) is

$$
g(t)=\frac{d x(t)}{d t}=-1+\sum_{k=-\infty}^{\infty} \delta(t-k)
$$

with a period between -0.5 and 0.5 of

$$
g_{1}(t)=-u(t+0.5)+u(t-0.5)+\delta(t)
$$

and same fundamental frequency Ω_{0} as $x(t)$ thus

$$
G_{k}=\left[\frac{-1}{s}\left(e^{s / 2}-e^{-s / 2}\right)+1\right]_{s=j 2 \pi k}=\frac{j}{2 \pi k} 2 j \sin (\pi k)+1=0+1=1
$$

so that

$$
g(t)=\sum_{k=-\infty}^{\infty} e^{j k 2 \pi t}
$$

equal to the derivative of the Fourier series of $x(t)$. Using the derivative Fourier series property

$$
G_{k}=j \Omega_{0} k X_{k} \Rightarrow X_{k}=\frac{1}{j 2 \pi k}=\frac{-j}{2 \pi k}
$$

Using these and $X_{0}=0.5$ we can then get the Fourier series for $x(t)$.
4.18 (a) According to the eigenfunction property of LTI the steady state response corresponding to the given $x(t)=1+\cos (t+\pi / 4)=\cos (0 t)+\cos (t+\pi / 4)$ is

$$
y_{s s}(t)=|H(j 0)| \cos (0 t+\angle H(j 0))+|H(j)| \cos (t+\pi / 4+\angle H(j))
$$

Since

$$
\begin{aligned}
H(j 0) & =\left.H(s)\right|_{s=j 0}=\frac{1}{2} e^{j 0} \\
H(j)= & \left.H(s)\right|_{s=j}=\frac{1+j}{1+3 j}=\frac{4-2 j}{10}=0.447 \angle-26.6^{o} \\
& y_{s s}(t)=0.5+0.447 \cos \left(t+18.4^{o}\right)
\end{aligned}
$$

(b) i. The input $x(t)=4 u(t)=4 \cos (0 t) u(t)$ in the steady state is $4 \cos (0 t)$, i.e., a cosine of frequency zero, so that its response is

$$
y_{s s}(t)=4|H(j 0)| \cos (0 t+\angle H(j 0))=4 \times 0.5=2
$$

ii. If $x(t)=4 u(t)$, then in the Laplace transform

$$
Y(s)=\frac{4}{s\left((s+1.5)^{2}+\left(2-1.5^{2}\right)\right)}=\frac{A}{s}+\cdots
$$

where the \cdots stands for terms that have poles in the left-hand s-plane that correspond to the transient so

$$
y_{s s}(t)=A=\left.Y(s) s\right|_{s=0}=2
$$

4.21 (a) The derivative of the period between 0 and 2 of the triangular signal $x(t)$ is

$$
y_{1}(t)=\frac{d x_{1}(t)}{d t}=u(t)-2 u(t-1)+u(t-2)
$$

and the signal

$$
y(t)=\sum_{k} y_{1}(t-2 k)
$$

is a train of square pulses of period $T_{0}=2$ and average zero. The signal $z(t)=y(t)+1$ is also periodic of the same period as $y(t)$ but average 1 . The Fourier series coefficients of $y(t)$ are

$$
\begin{aligned}
Y_{k} & =\left.\frac{1}{2 s} e^{-s}\left(e^{s}-2+e^{-s}\right)\right|_{s=j \pi k}=\frac{1}{j \pi k} e^{-j \pi k}(\cos (\pi k)-1) \\
& =\frac{1}{j \pi k}\left[(-1)^{2 k}-(-1)^{k}\right]=\frac{2}{j \pi k} \quad k \neq 0, \text { odd }
\end{aligned}
$$

and zero for k even. The Fourier coefficients of $z(t)$ are 1 as d.c. value and $Z_{k}=Y_{k}$ for k odd and zero for k even and $\neq 0$.
(b) The Fourier series of $y(t)$ is

$$
\begin{aligned}
y(t) & =\sum_{k=-\infty, \text { odd }}^{\infty} \frac{2}{j \pi k} e^{j \pi k t} \\
& =4 \sum_{k>0, \text { odd }} \frac{\sin (\pi k t)}{\pi k}
\end{aligned}
$$

and that of the signal $z(t)$ is

$$
z(t)=1+4 \sum_{k>0, \text { odd }} \frac{\sin (\pi k t)}{\pi k}
$$

The signal $y(t)$ is an odd function of t and as such it can be represented by sines, and this is why it has purely imaginary coefficients for its exponential Fourier series. The signal $z(t)$ is neither even nor odd and as such it is made up of an even component, the constant 1 , and an odd component, $y(t)$.
(c) If we reverse the process in (a) by integrating $y_{1}(t)$ we get $x_{1}(t)=r(t)-2 r(t-1)+r(t-2)$ which would give us the periodic signal $x(t)$ by shifting and adding. The Fourier series coefficients of $x(t)$ are

$$
X_{k}=\frac{Y_{k}}{j \pi k}=\frac{2}{-(\pi k)^{2}} \quad k \neq 0, \text { odd, and } \quad X_{0}=0.5
$$

and zero for k even. Notice that the integral of $y(t)$ would be zero for each period and would give the $x_{1}(t)$ shifted in time in each period.
(d) The signal $x(t)$ is even and as such it can be represented by a cosine Fourier series so the coefficients are real. We have that

$$
\begin{aligned}
x(t) & =0.5+\sum_{k=-\infty, k \neq 0, \text { odd }}^{\infty} \frac{-2}{(\pi k)^{2}} e^{j \pi k t} \\
& =0.5+\sum_{k=1, \text { odd }}^{\infty} \frac{4 \cos (\pi k t-\pi)}{(\pi k)^{2}}
\end{aligned}
$$

Copyright 2014, Elsevier, Inc. All rights reserved.

