12.14 (a) From the realization

$$
\begin{aligned}
& E(z)=X(z)-E(z)\left(z^{-1}+G z^{-2}\right) \Rightarrow E(z)=\frac{X(z)}{1+z^{-1}+G z^{-2}} \\
& Y(z)=E(z)\left(1+z^{-1}+z^{-2}\right) \Rightarrow \frac{Y(z)}{X(z)}=\frac{1+z^{-1}+z^{-2}}{1+z^{-1}+G z^{-2}}
\end{aligned}
$$

or

$$
Y(z)\left[1+z^{-1}+G z^{-2}\right]=X(z)\left[1+z^{-1}+z^{-2}\right]
$$

which gives the difference equation:

$$
y[n]=-y[n-1]-G y[n-2]+x[n]+x[n-1]+x[n-2]
$$

(b) The transfer function of the filter is

$$
H(z)=\frac{1+z^{-1}+z^{-2}}{1+z^{-1}+G z^{-2}}
$$

with poles

$$
p_{1,2}=-0.5 \pm \frac{\sqrt{1-4 G}}{2}
$$

for these to be complex conjugates we need that $1-4 G<0$ or $G>1 / 4$. The BIBO stability requires that $\left|p_{1,2}\right|<1$ (inside the unit circle), or

$$
\sqrt{\frac{1}{4}+\frac{4 G-1}{4}}<1
$$

or $G<1$. Thus for the system to have complex conjugate poles and to be BIBO stable we need that $1 / 4<G<1$.
12.15 (a) Let

$$
H(z)=\underbrace{\frac{2\left(1-z^{-1}\right)}{1+0.5 z^{-1}}}_{H_{1}(z)} \underbrace{\frac{1+\sqrt{2} z^{-1}+z^{-2}}{1-0.9 z^{-1}+0.81 z^{-2}}}_{H_{2}(z)}
$$

The cascade realization of $H(z)$ is as shown in Fig. 12.2

Figure 12.2: Problem 15: Cascade realization of $H(z)$.
(b) To obtain the parallel realization we do a partial fraction expansion of $H(z)$. Notice that $H(z)$ is not proper rational and so we have to obtain a constant term before performing the partial fraction expansion

$$
H(z)=-4.94+\frac{2.16}{1+0.5 z^{-1}}+\frac{4.78-1.6 z^{-1}}{1-0.9 z^{-1}+0.81 z^{-2}}
$$

Figure 12.3: Problem 15: Parallel realization of $H(z)$.
12.16 Using the variables $v[n]$ and $w[n]$ we obtain the following expressions

$$
\begin{aligned}
g[n] & =2 v[n]+1.8 v[n-1]+0.4 v[n-2] \\
v[n] & =x[n]+1.3 v[n-1]-0.8 v[n-2]
\end{aligned}
$$

with Z-transforms

$$
\begin{aligned}
& G(z)=\left(2+1.8 z^{-1}+0.4 z^{-2}\right) V(z) \\
& V(z)=\frac{X(z)}{1-1.3 z^{-1}+0.8 z^{-2}}
\end{aligned}
$$

so that

$$
\frac{G(z)}{X(z)}=\frac{2+1.8 z^{-1}+0.4 z^{-2}}{1-1.3 z^{-1}+0.8 z^{-2}}
$$

Thus, the difference equation relating $g[n]$ to $x[n]$ is

$$
g[n]=1.3 g[n-1]-0.8 g[n-2]+2 x[n]+1.8 x[n-1]+0.4 x[n-2]
$$

For the second cascade, we have

$$
\begin{aligned}
& y[n]=3 w[n]+4.5 w[n-1] \Rightarrow Y(z)=\left(3+4.5 z^{-1}\right) W(z) \\
& w[n]=g[n]+0.3 w[n-1] \Rightarrow W(z)=\frac{G(z)}{1-0.3 z^{-1}}
\end{aligned}
$$

so that

$$
\frac{Y(z)}{G(z)}=\frac{3+4.5 z^{-1}}{1-0.3 z^{-1}} \Rightarrow y[n]=0.3 y[n-1]+3 g[n]+4.5 g[n-1]
$$

where the term on the right is the difference equation relating $y[n]$ and $g[n]$.
(b) The overall transfer function is

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{Y(z)}{G(z)} \frac{G(z)}{X(z)}=\frac{\left(3+4.5 z^{-1}\right)\left(2+1.8 z^{-1}+0.4 z^{-2}\right)}{\left(1-0.3 z^{-1}\right)\left(1-1.3 z^{-1}+0.8 z^{-2}\right)}
$$

